Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6355–6359. doi: 10.1128/jb.179.20.6355-6359.1997

Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar.

R Deora 1, T Tseng 1, T K Misra 1
PMCID: PMC179550  PMID: 9335283

Abstract

A homolog of the multiple-stress-responsive transcription factor sigmaB of Bacillus subtilis was predicted from the DNA sequence analysis of a region of the Staphylococcus aureus chromosome. A hybrid between the coding sequence of the first 11 amino acids of the gene 10 leader peptide of phage T7 (T7.Tag) and the putative sigB gene of S. aureus was constructed and cloned into Escherichia coli BL21(DE3)pLysS for overexpression from a T7 promoter. A homogeneous preparation of the overproduced protein was obtained by affinity chromatography with a T7.Tag monoclonal antibody coupled to agarose. The amino-terminal amino acid sequence of the first 22 residues of the purified protein matched that deduced from the nucleotide sequence. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein, designated sigmaSB, indicated that it migrated as an approximately 39-kDa polypeptide. Promoter-specific transcription from the B. subtilis sigmaB-dependent PB promoter of the sigB operon was stimulated by sigmaSB in a concentration-dependent fashion when reconstituted with the S. aureus core RNA polymerase (RNAP). Specific transcript from the predicted sigmaB-dependent PB promoter of the sigB operon of S. aureus was obtained by the reconstituted RNAP in a runoff transcription reaction. The sar operon of S. aureus contains three promoter elements (P1, P2, and P3) and is known to partly control the synthesis of a number of extracellular toxins and several cell wall proteins. Our in vitro studies revealed that transcription from the P1 promoter is dependent on the primary sigma factor sigmaSA, while that of the P3 promoter is dependent on sigmaSB. As determined by primer extension studies, the 5' end of the sigmaSB-initiated mRNA synthesized in vitro from the sar P3 promoter is in agreement with the 5' end of the cellular RNA.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelnour A., Arvidson S., Bremell T., Rydén C., Tarkowski A. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun. 1993 Sep;61(9):3879–3885. doi: 10.1128/iai.61.9.3879-3885.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alper S., Duncan L., Losick R. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell. 1994 Apr 22;77(2):195–205. doi: 10.1016/0092-8674(94)90312-3. [DOI] [PubMed] [Google Scholar]
  3. Balaban N., Novick R. P. Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1619–1623. doi: 10.1073/pnas.92.5.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer M. G., Heinrichs J. H., Cheung A. L. The molecular architecture of the sar locus in Staphylococcus aureus. J Bacteriol. 1996 Aug;178(15):4563–4570. doi: 10.1128/jb.178.15.4563-4570.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benson A. K., Haldenwang W. G. The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol. 1993 Apr;175(7):1929–1935. doi: 10.1128/jb.175.7.1929-1935.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Binnie C., Lampe M., Losick R. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5943–5947. doi: 10.1073/pnas.83.16.5943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boylan S. A., Redfield A. R., Brody M. S., Price C. W. Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol. 1993 Dec;175(24):7931–7937. doi: 10.1128/jb.175.24.7931-7937.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheung A. L., Bayer M. G., Heinrichs J. H. sar Genetic determinants necessary for transcription of RNAII and RNAIII in the agr locus of Staphylococcus aureus. J Bacteriol. 1997 Jun;179(12):3963–3971. doi: 10.1128/jb.179.12.3963-3971.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheung A. L., Eberhardt K. J., Chung E., Yeaman M. R., Sullam P. M., Ramos M., Bayer A. S. Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994 Nov;94(5):1815–1822. doi: 10.1172/JCI117530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheung A. L., Eberhardt K., Heinrichs J. H. Regulation of protein A synthesis by the sar and agr loci of Staphylococcus aureus. Infect Immun. 1997 Jun;65(6):2243–2249. doi: 10.1128/iai.65.6.2243-2249.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6462–6466. doi: 10.1073/pnas.89.14.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheung A. L., Ying P. Regulation of alpha- and beta-hemolysins by the sar locus of Staphylococcus aureus. J Bacteriol. 1994 Feb;176(3):580–585. doi: 10.1128/jb.176.3.580-585.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Deora R., Misra T. K. Characterization of the primary sigma factor of Staphylococcus aureus. J Biol Chem. 1996 Sep 6;271(36):21828–21834. doi: 10.1074/jbc.271.36.21828. [DOI] [PubMed] [Google Scholar]
  14. Dombroski A. J., Walter W. A., Gross C. A. Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev. 1993 Dec;7(12A):2446–2455. doi: 10.1101/gad.7.12a.2446. [DOI] [PubMed] [Google Scholar]
  15. Duncan M. L., Kalman S. S., Thomas S. M., Price C. W. Gene encoding the 37,000-dalton minor sigma factor of Bacillus subtilis RNA polymerase: isolation, nucleotide sequence, chromosomal locus, and cryptic function. J Bacteriol. 1987 Feb;169(2):771–778. doi: 10.1128/jb.169.2.771-778.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995 Sep;63(9):3373–3380. doi: 10.1128/iai.63.9.3373-3380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gitt M. A., Wang L. F., Doi R. H. A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem. 1985 Jun 25;260(12):7178–7185. [PubMed] [Google Scholar]
  18. Haldenwang W. G., Losick R. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature. 1979 Nov 15;282(5736):256–260. doi: 10.1038/282256a0. [DOI] [PubMed] [Google Scholar]
  19. Haldenwang W. G., Losick R. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7000–7004. doi: 10.1073/pnas.77.12.7000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haldenwang W. G. The sigma factors of Bacillus subtilis. Microbiol Rev. 1995 Mar;59(1):1–30. doi: 10.1128/mr.59.1.1-30.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heinrichs J. H., Bayer M. G., Cheung A. L. Characterization of the sar locus and its interaction with agr in Staphylococcus aureus. J Bacteriol. 1996 Jan;178(2):418–423. doi: 10.1128/jb.178.2.418-423.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Helmann J. D., Chamberlin M. J. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. doi: 10.1146/annurev.bi.57.070188.004203. [DOI] [PubMed] [Google Scholar]
  23. Ji G., Beavis R. C., Novick R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12055–12059. doi: 10.1073/pnas.92.26.12055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ji G., Beavis R., Novick R. P. Bacterial interference caused by autoinducing peptide variants. Science. 1997 Jun 27;276(5321):2027–2030. doi: 10.1126/science.276.5321.2027. [DOI] [PubMed] [Google Scholar]
  25. Kullik I, I, Giachino P. The alternative sigma factor sigmaB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch Microbiol. 1997 Mar 7;167(2/3):151–159. doi: 10.1007/s002030050428. [DOI] [PubMed] [Google Scholar]
  26. Morfeldt E., Janzon L., Arvidson S., Löfdahl S. Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet. 1988 Mar;211(3):435–440. doi: 10.1007/BF00425697. [DOI] [PubMed] [Google Scholar]
  27. Morfeldt E., Taylor D., von Gabain A., Arvidson S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J. 1995 Sep 15;14(18):4569–4577. doi: 10.1002/j.1460-2075.1995.tb00136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Novick R. P., Projan S. J., Kornblum J., Ross H. F., Ji G., Kreiswirth B., Vandenesch F., Moghazeh S. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet. 1995 Aug 30;248(4):446–458. doi: 10.1007/BF02191645. [DOI] [PubMed] [Google Scholar]
  29. Novick R. P., Ross H. F., Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993 Oct;12(10):3967–3975. doi: 10.1002/j.1460-2075.1993.tb06074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peng H. L., Novick R. P., Kreiswirth B., Kornblum J., Schlievert P. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol. 1988 Sep;170(9):4365–4372. doi: 10.1128/jb.170.9.4365-4372.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Strickland M. S., Thompson N. E., Burgess R. R. Structure and function of the sigma-70 subunit of Escherichia coli RNA polymerase. Monoclonal antibodies: localization of epitopes by peptide mapping and effects on transcription. Biochemistry. 1988 Jul 26;27(15):5755–5762. doi: 10.1021/bi00415a054. [DOI] [PubMed] [Google Scholar]
  32. Voelker U., Luo T., Smirnova N., Haldenwang W. Stress activation of Bacillus subtilis sigma B can occur in the absence of the sigma B negative regulator RsbX. J Bacteriol. 1997 Mar;179(6):1980–1984. doi: 10.1128/jb.179.6.1980-1984.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Voelker U., Voelker A., Maul B., Hecker M., Dufour A., Haldenwang W. G. Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol. 1995 Jul;177(13):3771–3780. doi: 10.1128/jb.177.13.3771-3780.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wolz C., McDevitt D., Foster T. J., Cheung A. L. Influence of agr on fibrinogen binding in Staphylococcus aureus Newman. Infect Immun. 1996 Aug;64(8):3142–3147. doi: 10.1128/iai.64.8.3142-3147.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu S., de Lencastre H., Tomasz A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol. 1996 Oct;178(20):6036–6042. doi: 10.1128/jb.178.20.6036-6042.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang X., Kang C. M., Brody M. S., Price C. W. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 1996 Sep 15;10(18):2265–2275. doi: 10.1101/gad.10.18.2265. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES