Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6378–6382. doi: 10.1128/jb.179.20.6378-6382.1997

The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein.

A Telenti 1, M Southworth 1, F Alcaide 1, S Daugelat 1, W R Jacobs Jr 1, F B Perler 1
PMCID: PMC179553  PMID: 9335286

Abstract

The 198-amino-acid in-frame insertion in the gyrA gene of Mycobacterium xenopi is the smallest known naturally occurring active protein splicing element (intein). Comparison with other mycobacterial gyrA inteins suggests that the M. xenopi intein underwent a complex series of events including (i) removal of 222 amino acids that encompass most of the central intein domain, and (ii) addition of a linker of unrelated residues. This naturally occurring genetic rearrangement is a representative characteristic of the taxon. The deletion process removes the conserved motifs involved in homing endonuclease activity. The linker insertion represents a structural requirement, as its mutation resulted in failure to splice. The M. xenopi GyrA intein thus provides a paradigm for a minimal protein splicing element.

Full Text

The Full Text of this article is available as a PDF (616.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcaide F., Richter I., Bernasconi C., Springer B., Hagenau C., Schulze-Röbbecke R., Tortoli E., Martín R., Böttger E. C., Telenti A. Heterogeneity and clonality among isolates of Mycobacterium kansasii: implications for epidemiological and pathogenicity studies. J Clin Microbiol. 1997 Aug;35(8):1959–1964. doi: 10.1128/jcm.35.8.1959-1964.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger J. M., Gamblin S. J., Harrison S. C., Wang J. C. Structure and mechanism of DNA topoisomerase II. Nature. 1996 Jan 18;379(6562):225–232. doi: 10.1038/379225a0. [DOI] [PubMed] [Google Scholar]
  3. Colston M. J., Davis E. O. The ins and outs of protein splicing elements. Mol Microbiol. 1994 May;12(3):359–363. doi: 10.1111/j.1365-2958.1994.tb01025.x. [DOI] [PubMed] [Google Scholar]
  4. Davis E. O., Jenner P. J., Brooks P. C., Colston M. J., Sedgwick S. G. Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell. 1992 Oct 16;71(2):201–210. doi: 10.1016/0092-8674(92)90349-h. [DOI] [PubMed] [Google Scholar]
  5. Doolittle R. F. The comings and goings of homing endonucleases and mobile introns. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5379–5381. doi: 10.1073/pnas.90.12.5379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duan X., Gimble F. S., Quiocho F. A. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell. 1997 May 16;89(4):555–564. doi: 10.1016/s0092-8674(00)80237-8. [DOI] [PubMed] [Google Scholar]
  7. Fsihi H., Vincent V., Cole S. T. Homing events in the gyrA gene of some mycobacteria. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3410–3415. doi: 10.1073/pnas.93.8.3410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gimble F. S., Thorner J. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature. 1992 May 28;357(6376):301–306. doi: 10.1038/357301a0. [DOI] [PubMed] [Google Scholar]
  9. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  10. Hodges R. A., Perler F. B., Noren C. J., Jack W. E. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992 Dec 11;20(23):6153–6157. doi: 10.1093/nar/20.23.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  12. Kirschner P., Böttger E. C. Microheterogeneity within rRNA of Mycobacterium gordonae. J Clin Microbiol. 1992 Apr;30(4):1049–1050. doi: 10.1128/jcm.30.4.1049-1050.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Perler F. B., Olsen G. J., Adam E. Compilation and analysis of intein sequences. Nucleic Acids Res. 1997 Mar 15;25(6):1087–1093. doi: 10.1093/nar/25.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pietrokovski S. A new intein in cyanobacteria and its significance for the spread of inteins. Trends Genet. 1996 Aug;12(8):287–288. doi: 10.1016/0168-9525(96)20005-8. [DOI] [PubMed] [Google Scholar]
  15. Pietrokovski S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 1994 Dec;3(12):2340–2350. doi: 10.1002/pro.5560031218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  17. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993 Feb;31(2):175–178. doi: 10.1128/jcm.31.2.175-178.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Xu M. Q., Perler F. B. The mechanism of protein splicing and its modulation by mutation. EMBO J. 1996 Oct 1;15(19):5146–5153. [PMC free article] [PubMed] [Google Scholar]
  19. Xu M. Q., Southworth M. W., Mersha F. B., Hornstra L. J., Perler F. B. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell. 1993 Dec 31;75(7):1371–1377. doi: 10.1016/0092-8674(93)90623-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES