Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6383–6390. doi: 10.1128/jb.179.20.6383-6390.1997

Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene.

J Nguyen 1, F Francou 1, M J Virolle 1, M Guérineau 1
PMCID: PMC179554  PMID: 9335287

Abstract

A regulatory gene, reg1, was identified in Streptomyces lividans. It encodes a 345-amino-acid protein (Reg1) which contains a helix-turn-helix DNA-binding motif in the N-terminal region. Reg1 exhibits similarity with the LacI/GalR family members over the entire sequence. It displays 95% identity with MalR (the repressor of malE in S. coelicolor), 65% identity with ORF-Sl (a putative regulatory gene of alpha-amylase of S. limosus), and 31% identity with CcpA (the carbon catabolite repressor in Bacillus subtilis). In S. lividans, the chromosomal disruption of reg1 affected the expression of several genes. The production of alpha-amylases of S. lividans and that of the alpha-amylase of S. limosus in S. lividans were enhanced in the reg1 mutant strains and relieved of carbon catabolite repression. As a result, the transcription level of the alpha-amylase of S. limosus was noticeably increased in the reg1 mutant strain. Moreover, the induction of chitinase production in S. lividans was relieved of carbon catabolite repression by glucose in the reg1 mutant strain, while the induction by chitin was lost. Therefore, reg1 can be regarded as a pleiotropic regulatory gene in S. lividans.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubert M., Weber E., Schneider D., Simonet J. M., Decaris B. Primary structure analysis of a duplicated region in the amplifiable AUD6 locus of Streptomyces ambofaciens DSM40697. FEMS Microbiol Lett. 1993 Oct 1;113(1):49–56. doi: 10.1111/j.1574-6968.1993.tb06486.x. [DOI] [PubMed] [Google Scholar]
  2. Berghammer H., Auer B. "Easypreps": fast and easy plasmid minipreparation for analysis of recombinant clones in E. coli. Biotechniques. 1993 Apr;14(4):524–528. [PubMed] [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  4. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene. 1997 May 6;190(2):315–317. doi: 10.1016/s0378-1119(97)00014-0. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Brennan R. G., Matthews B. W. The helix-turn-helix DNA binding motif. J Biol Chem. 1989 Feb 5;264(4):1903–1906. [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davison S. P., Santangelo J. D., Reid S. J., Woods D. R. A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. Microbiology. 1995 Apr;141(Pt 4):989–996. doi: 10.1099/13500872-141-4-989. [DOI] [PubMed] [Google Scholar]
  9. Delic I., Robbins P., Westpheling J. Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1885–1889. doi: 10.1073/pnas.89.5.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannotta F., Georis J., Moreau A., Mazy-Servais C., Joris B., Dusart J. A sequence-specific DNA-binding protein interacts with the xlnC upstream region of Streptomyces sp. strain EC3. FEMS Microbiol Lett. 1996 Aug 15;142(1):91–97. doi: 10.1111/j.1574-6968.1996.tb08413.x. [DOI] [PubMed] [Google Scholar]
  11. Gilbert M., Morosoli R., Shareck F., Kluepfel D. Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol. 1995;15(1):13–39. doi: 10.3109/07388559509150530. [DOI] [PubMed] [Google Scholar]
  12. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  13. He B., Smith J. M., Zalkin H. Escherichia coli purB gene: cloning, nucleotide sequence, and regulation by purR. J Bacteriol. 1992 Jan;174(1):130–136. doi: 10.1128/jb.174.1.130-136.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  15. Hindle Z., Smith C. P. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol. 1994 Jun;12(5):737–745. doi: 10.1111/j.1365-2958.1994.tb01061.x. [DOI] [PubMed] [Google Scholar]
  16. Hueck C. J., Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol. 1995 Feb;15(3):395–401. doi: 10.1111/j.1365-2958.1995.tb02252.x. [DOI] [PubMed] [Google Scholar]
  17. Hueck C. J., Hillen W., Saier M. H., Jr Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol. 1994 Sep;145(7):503–518. doi: 10.1016/0923-2508(94)90028-0. [DOI] [PubMed] [Google Scholar]
  18. Hurtubise Y., Shareck F., Kluepfel D., Morosoli R. A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol. 1995 Jul;17(2):367–377. doi: 10.1111/j.1365-2958.1995.mmi_17020367.x. [DOI] [PubMed] [Google Scholar]
  19. Janssen G. R., Bibb M. J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993 Feb 14;124(1):133–134. doi: 10.1016/0378-1119(93)90774-w. [DOI] [PubMed] [Google Scholar]
  20. Küster E., Luesink E. J., de Vos W. M., Hillen W. Immunological crossreactivity to the catabolite control protein CcpA Bacillus megaterium is found in many gram-positive bacteria. FEMS Microbiol Lett. 1996 Jun 1;139(2-3):109–115. doi: 10.1111/j.1574-6968.1996.tb08188.x. [DOI] [PubMed] [Google Scholar]
  21. Leblond P., Francou F. X., Simonet J. M., Decaris B. Pulsed-field gel electrophoresis analysis of the genome of Streptomyces ambofaciens strains. FEMS Microbiol Lett. 1990 Oct;60(1-2):79–88. doi: 10.1016/0378-1097(90)90349-u. [DOI] [PubMed] [Google Scholar]
  22. Leblond P., Redenbach M., Cullum J. Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J Bacteriol. 1993 Jun;175(11):3422–3429. doi: 10.1128/jb.175.11.3422-3429.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Livák F., Schatz D. G. Identification of V(D)J recombination coding end intermediates in normal thymocytes. J Mol Biol. 1997 Mar 21;267(1):1–9. doi: 10.1006/jmbi.1996.0834. [DOI] [PubMed] [Google Scholar]
  24. Long C. M., Virolle M. J., Chang S. Y., Chang S., Bibb M. J. alpha-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate alpha-amylases. J Bacteriol. 1987 Dec;169(12):5745–5754. doi: 10.1128/jb.169.12.5745-5754.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miyashita K., Fujii T. Nucleotide sequence and analysis of a gene (chiA) for a chitinase from Streptomyces lividans 66. Biosci Biotechnol Biochem. 1993 Oct;57(10):1691–1698. doi: 10.1271/bbb.57.1691. [DOI] [PubMed] [Google Scholar]
  26. Paulsen I. T. Carbon metabolism and its regulation in Streptomyces and other high GC gram-positive bacteria. Res Microbiol. 1996 Jul-Sep;147(6-7):535–541. doi: 10.1016/0923-2508(96)84009-5. [DOI] [PubMed] [Google Scholar]
  27. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Piendl W., Eichenseer C., Viel P., Altenbuchner J., Cullum J. Analysis of putative DNA amplification genes in the element AUD1 of Streptomyces lividans 66. Mol Gen Genet. 1994 Aug 15;244(4):439–443. doi: 10.1007/BF00286697. [DOI] [PubMed] [Google Scholar]
  29. Robbins P. W., Overbye K., Albright C., Benfield B., Pero J. Cloning and high-level expression of chitinase-encoding gene of Streptomyces plicatus. Gene. 1992 Feb 1;111(1):69–76. doi: 10.1016/0378-1119(92)90604-n. [DOI] [PubMed] [Google Scholar]
  30. Rolfes R. J., Zalkin H. Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator. J Biol Chem. 1988 Dec 25;263(36):19653–19661. [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schumacher M. A., Choi K. Y., Zalkin H., Brennan R. G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science. 1994 Nov 4;266(5186):763–770. doi: 10.1126/science.7973627. [DOI] [PubMed] [Google Scholar]
  33. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsao L. S., Lin L. L., Chen J. C., Chen J. H., Hsu W. H. Cloning and characterization of an alpha-amylase gene from Streptomyces lividans. Biochim Biophys Acta. 1993 Jan 23;1171(3):255–262. doi: 10.1016/0167-4781(93)90063-j. [DOI] [PubMed] [Google Scholar]
  35. Vigal T., Gil J. A., Daza A., García-González M. D., Martín J. F. Cloning, characterization and expression of an alpha-amylase gene from Streptomyces griseus IMRU3570. Mol Gen Genet. 1991 Feb;225(2):278–288. doi: 10.1007/BF00269860. [DOI] [PubMed] [Google Scholar]
  36. Virolle M. J., Bibb M. J. Cloning, characterization and regulation of an alpha-amylase gene from Streptomyces limosus. Mol Microbiol. 1988 Mar;2(2):197–208. doi: 10.1111/j.1365-2958.1988.tb00021.x. [DOI] [PubMed] [Google Scholar]
  37. Virolle M. J., Gagnat J. Sequences involved in growth-phase-dependent expression and glucose repression of a Streptomyces alpha-amylase gene. Microbiology. 1994 May;140(Pt 5):1059–1067. doi: 10.1099/13500872-140-5-1059. [DOI] [PubMed] [Google Scholar]
  38. Virolle M. J., Long C. M., Chang S., Bibb M. J. Cloning, characterisation and regulation of an alpha-amylase gene from Streptomyces venezuelae. Gene. 1988 Dec 30;74(2):321–334. doi: 10.1016/0378-1119(88)90166-7. [DOI] [PubMed] [Google Scholar]
  39. Volff J. N., Eichenseer C., Viell P., Piendl W., Altenbuchner J. Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol. 1996 Sep;21(5):1037–1047. doi: 10.1046/j.1365-2958.1996.761428.x. [DOI] [PubMed] [Google Scholar]
  40. Walter S., Schrempf H. The synthesis of the Streptomyces reticuli cellulase (avicelase) is regulated by both activation and repression mechanisms. Mol Gen Genet. 1996 May 23;251(2):186–195. doi: 10.1007/BF02172917. [DOI] [PubMed] [Google Scholar]
  41. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet. 1986 Jun;203(3):468–478. doi: 10.1007/BF00422072. [DOI] [PubMed] [Google Scholar]
  42. Weickert M. J., Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed] [Google Scholar]
  43. Weickert M. J., Adhya S. The galactose regulon of Escherichia coli. Mol Microbiol. 1993 Oct;10(2):245–251. doi: 10.1111/j.1365-2958.1993.tb01950.x. [DOI] [PubMed] [Google Scholar]
  44. Weickert M. J., Chambliss G. H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. doi: 10.1073/pnas.87.16.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wilkinson M., Doskow J., Lindsey S. RNA blots: staining procedures and optimization of conditions. Nucleic Acids Res. 1991 Feb 11;19(3):679–679. doi: 10.1093/nar/19.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  47. van Wezel G. P., White J., Young P., Postma P. W., Bibb M. J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol. 1997 Feb;23(3):537–549. doi: 10.1046/j.1365-2958.1997.d01-1878.x. [DOI] [PubMed] [Google Scholar]
  48. von Wilcken-Bergmann B., Müller-Hill B. Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2427–2431. doi: 10.1073/pnas.79.8.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES