Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6400–6407. doi: 10.1128/jb.179.20.6400-6407.1997

Identification of human transferrin-binding sites within meningococcal transferrin-binding protein B.

G Renauld-Mongénie 1, D Poncet 1, L von Olleschik-Elbheim 1, T Cournez 1, M Mignon 1, M A Schmidt 1, M J Quentin-Millet 1
PMCID: PMC179556  PMID: 9335289

Abstract

Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.

Full Text

The Full Text of this article is available as a PDF (562.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala'Aldeen D. A., Borriello S. P. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine. 1996 Jan;14(1):49–53. doi: 10.1016/0264-410x(95)00136-o. [DOI] [PubMed] [Google Scholar]
  2. Ala'Aldeen D. A., Powell N. B., Wall R. A., Borriello S. P. Localization of the meningococcal receptors for human transferrin. Infect Immun. 1993 Feb;61(2):751–759. doi: 10.1128/iai.61.2.751-759.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alcantara J., Schryvers A. B. Transferrin binding protein two interacts with both the N-lobe and C-lobe of ovotransferrin. Microb Pathog. 1996 Feb;20(2):73–85. doi: 10.1006/mpat.1996.0007. [DOI] [PubMed] [Google Scholar]
  4. Alcantara J., Yu R. H., Schryvers A. B. The region of human transferrin involved in binding to bacterial transferrin receptors is localized in the C-lobe. Mol Microbiol. 1993 Jun;8(6):1135–1143. doi: 10.1111/j.1365-2958.1993.tb01658.x. [DOI] [PubMed] [Google Scholar]
  5. Anderson J. E., Sparling P. F., Cornelissen C. N. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol. 1994 Jun;176(11):3162–3170. doi: 10.1128/jb.176.11.3162-3170.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Archibald F. S., DeVoe I. W. Iron acquisition by Neisseria meningitidis in vitro. Infect Immun. 1980 Feb;27(2):322–334. doi: 10.1128/iai.27.2.322-334.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornelissen C. N., Anderson J. E., Sparling P. F. Characterization of the diversity and the transferrin-binding domain of gonococcal transferrin-binding protein 2. Infect Immun. 1997 Feb;65(2):822–828. doi: 10.1128/iai.65.2.822-828.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornelissen C. N., Sparling P. F. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins. J Bacteriol. 1996 Mar;178(5):1437–1444. doi: 10.1128/jb.178.5.1437-1444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danve B., Lissolo L., Mignon M., Dumas P., Colombani S., Schryvers A. B., Quentin-Millet M. J. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine. 1993 Sep;11(12):1214–1220. doi: 10.1016/0264-410x(93)90045-y. [DOI] [PubMed] [Google Scholar]
  10. Gerlach G. F., Klashinsky S., Anderson C., Potter A. A., Willson P. J. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun. 1992 Aug;60(8):3253–3261. doi: 10.1128/iai.60.8.3253-3261.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray-Owen S. D., Loosmore S., Schryvers A. B. Identification and characterization of genes encoding the human transferrin-binding proteins from Haemophilus influenzae. Infect Immun. 1995 Apr;63(4):1201–1210. doi: 10.1128/iai.63.4.1201-1210.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lee B. C., Hill P. Identification of an outer-membrane haemoglobin-binding protein in Neisseria meningitidis. J Gen Microbiol. 1992 Dec;138(12):2647–2656. doi: 10.1099/00221287-138-12-2647. [DOI] [PubMed] [Google Scholar]
  15. Legrain M., Findeli A., Villeval D., Quentin-Millet M. J., Jacobs E. Molecular characterization of hybrid Tbp2 proteins from Neisseria meningitidis. Mol Microbiol. 1996 Jan;19(1):159–169. doi: 10.1046/j.1365-2958.1996.364891.x. [DOI] [PubMed] [Google Scholar]
  16. Legrain M., Mazarin V., Irwin S. W., Bouchon B., Quentin-Millet M. J., Jacobs E., Schryvers A. B. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene. 1993 Aug 16;130(1):73–80. doi: 10.1016/0378-1119(93)90348-7. [DOI] [PubMed] [Google Scholar]
  17. Lewis L. A., Dyer D. W. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol. 1995 Mar;177(5):1299–1306. doi: 10.1128/jb.177.5.1299-1306.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
  19. Mazarin V., Rokbi B., Quentin-Millet M. J. Diversity of the transferrin-binding protein Tbp2 of Neisseria meningitidis. Gene. 1995 May 26;158(1):145–146. doi: 10.1016/0378-1119(95)00151-u. [DOI] [PubMed] [Google Scholar]
  20. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  21. Ogunnariwo J. A., Cheng C., Ford J., Schryvers A. B. Response of Haemophilus somnus to iron limitation: expression and identification of a bovine-specific transferrin receptor. Microb Pathog. 1990 Dec;9(6):397–406. doi: 10.1016/0882-4010(90)90058-x. [DOI] [PubMed] [Google Scholar]
  22. Pettersson A., Maas A., Tommassen J. Identification of the iroA gene product of Neisseria meningitidis as a lactoferrin receptor. J Bacteriol. 1994 Mar;176(6):1764–1766. doi: 10.1128/jb.176.6.1764-1766.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Retzer M. D., Kabani A., Button L. L., Yu R. H., Schryvers A. B. Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors. J Biol Chem. 1996 Jan 12;271(2):1166–1173. doi: 10.1074/jbc.271.2.1166. [DOI] [PubMed] [Google Scholar]
  24. Rokbi B., Maitre-Wilmotte G., Mazarin V., Fourrichon L., Lissolo L., Quentin-Millet M. J. Variable sequences in a mosaic-like domain of meningococcal tbp2 encode immunoreactive epitopes. FEMS Microbiol Lett. 1995 Oct 15;132(3):277–283. doi: 10.1016/0378-1097(95)00326-z. [DOI] [PubMed] [Google Scholar]
  25. Rokbi B., Mazarin V., Maitre-Wilmotte G., Quentin-Millet M. J. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol Lett. 1993 Jun 1;110(1):51–57. doi: 10.1111/j.1574-6968.1993.tb06294.x. [DOI] [PubMed] [Google Scholar]
  26. Rokbi B., Mignon M., Maitre-Wilmotte G., Lissolo L., Danve B., Caugant D. A., Quentin-Millet M. J. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun. 1997 Jan;65(1):55–63. doi: 10.1128/iai.65.1.55-63.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schryvers A. B., Gonzalez G. C. Receptors for transferrin in pathogenic bacteria are specific for the host's protein. Can J Microbiol. 1990 Feb;36(2):145–147. doi: 10.1139/m90-026. [DOI] [PubMed] [Google Scholar]
  28. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol. 1988 Mar;2(2):281–288. doi: 10.1111/j.1365-2958.1988.tb00029.x. [DOI] [PubMed] [Google Scholar]
  29. Strutzberg K., von Olleschik L., Franz B., Pyne C., Schmidt M. A., Gerlach G. F. Mapping of functional regions on the transferrin-binding protein (TfbA) of Actinobacillus pleuropneumoniae. Infect Immun. 1995 Oct;63(10):3846–3850. doi: 10.1128/iai.63.10.3846-3850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vonder Haar R. A., Legrain M., Kolbe H. V., Jacobs E. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J Bacteriol. 1994 Oct;176(20):6207–6213. doi: 10.1128/jb.176.20.6207-6213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zak O., Trinder D., Aisen P. Primary receptor-recognition site of human transferrin is in the C-terminal lobe. J Biol Chem. 1994 Mar 11;269(10):7110–7114. [PubMed] [Google Scholar]
  33. von Olleschik-Elbheim L., el Bayâ A., Schmidt M. A. Quantification of immunological membrane reactions employing a digital desk top scanner and standard graphics software. J Immunol Methods. 1996 Oct 16;197(1-2):181–186. doi: 10.1016/0022-1759(96)00150-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES