Abstract
Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balasubramanian V., Pavelka M. S., Jr, Bardarov S. S., Martin J., Weisbrod T. R., McAdam R. A., Bloom B. R., Jacobs W. R., Jr Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol. 1996 Jan;178(1):273–279. doi: 10.1128/jb.178.1.273-279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booker S., Broderick J., Stubbe J. Ribonucleotide reductases: radical enzymes with suicidal tendencies. Biochem Soc Trans. 1993 Aug;21(3):727–730. doi: 10.1042/bst0210727. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Climent I., Sjöberg B. M., Huang C. Y. Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry. 1991 May 28;30(21):5164–5171. doi: 10.1021/bi00235a008. [DOI] [PubMed] [Google Scholar]
- Ekberg M., Sahlin M., Eriksson M., Sjöberg B. M. Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase. J Biol Chem. 1996 Aug 23;271(34):20655–20659. doi: 10.1074/jbc.271.34.20655. [DOI] [PubMed] [Google Scholar]
- Eliasson R., Pontis E., Jordan A., Reichard P. Allosteric regulation of the third ribonucleotide reductase (NrdEF enzyme) from enterobacteriaceae. J Biol Chem. 1996 Oct 25;271(43):26582–26587. doi: 10.1074/jbc.271.43.26582. [DOI] [PubMed] [Google Scholar]
- Elledge S. J., Davis R. W. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev. 1990 May;4(5):740–751. doi: 10.1101/gad.4.5.740. [DOI] [PubMed] [Google Scholar]
- Eriksson S., Thelander L., Akerman M. Allosteric regulation of calf thymus ribonucleoside diphosphate reductase. Biochemistry. 1979 Jul 10;18(14):2948–2952. doi: 10.1021/bi00581a005. [DOI] [PubMed] [Google Scholar]
- Fisher A., Yang F. D., Rubin H., Cooperman B. S. R2 C-terminal peptide inhibition of mammalian and yeast ribonucleotide reductase. J Med Chem. 1993 Nov 26;36(24):3859–3862. doi: 10.1021/jm00076a015. [DOI] [PubMed] [Google Scholar]
- Fuchs J. A., Karlström H. O., Warner H. R., Reichard P. Defective gene product in dnaF mutant of Escherichia coli. Nat New Biol. 1972 Jul 19;238(81):69–71. doi: 10.1038/newbio238069a0. [DOI] [PubMed] [Google Scholar]
- Gaudreau P., Michaud J., Cohen E. A., Langelier Y., Brazeau P. Structure-activity studies on synthetic peptides inhibiting herpes simplex virus ribonucleotide reductase. J Biol Chem. 1987 Sep 15;262(26):12413–12416. [PubMed] [Google Scholar]
- Greenberg G. R., Hilfinger J. M. Regulation of synthesis of ribonucleotide reductase and relationship to DNA replication in various systems. Prog Nucleic Acid Res Mol Biol. 1996;53:345–395. doi: 10.1016/s0079-6603(08)60150-6. [DOI] [PubMed] [Google Scholar]
- Hiriyanna K. T., Ramakrishnan T. Deoxyribonucleic acid replication time in Mycobacterium tuberculosis H37 Rv. Arch Microbiol. 1986 Mar;144(2):105–109. doi: 10.1007/BF00414718. [DOI] [PubMed] [Google Scholar]
- Huberts P., Mizrahi V. Cloning and sequence analysis of the gene encoding the DNA polymerase I from Mycobacterium tuberculosis. Gene. 1995 Oct 16;164(1):133–136. doi: 10.1016/0378-1119(95)00453-d. [DOI] [PubMed] [Google Scholar]
- Ingemarson R., Thelander L. A kinetic study on the influence of nucleoside triphosphate effectors on subunit interaction in mouse ribonucleotide reductase. Biochemistry. 1996 Jul 2;35(26):8603–8609. doi: 10.1021/bi960184n. [DOI] [PubMed] [Google Scholar]
- Jordan A., Aragall E., Gibert I., Barbe J. Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of two class I ribonucleotide reductases present in both bacteria. Mol Microbiol. 1996 Feb;19(4):777–790. doi: 10.1046/j.1365-2958.1996.424950.x. [DOI] [PubMed] [Google Scholar]
- Jordan A., Gibert I., Barbé J. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol. 1994 Jun;176(11):3420–3427. doi: 10.1128/jb.176.11.3420-3427.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan A., Pontis E., Aslund F., Hellman U., Gibert I., Reichard P. The ribonucleotide reductase system of Lactococcus lactis. Characterization of an NrdEF enzyme and a new electron transport protein. J Biol Chem. 1996 Apr 12;271(15):8779–8785. doi: 10.1074/jbc.271.15.8779. [DOI] [PubMed] [Google Scholar]
- Jordan A., Pontis E., Atta M., Krook M., Gibert I., Barbé J., Reichard P. A second class I ribonucleotide reductase in Enterobacteriaceae: characterization of the Salmonella typhimurium enzyme. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12892–12896. doi: 10.1073/pnas.91.26.12892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liuzzi M., Déziel R., Moss N., Beaulieu P., Bonneau A. M., Bousquet C., Chafouleas J. G., Garneau M., Jaramillo J., Krogsrud R. L. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature. 1994 Dec 15;372(6507):695–698. doi: 10.1038/372695a0. [DOI] [PubMed] [Google Scholar]
- Madhusudan K., Ramesh V., Nagaraja V. Molecular cloning of gyrA and gyrB genes of Mycobacterium tuberculosis: analysis of nucleotide sequence. Biochem Mol Biol Int. 1994 Jul;33(4):651–660. [PubMed] [Google Scholar]
- Mao S. S., Holler T. P., Yu G. X., Bollinger J. M., Jr, Booker S., Johnston M. I., Stubbe J. A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing. Biochemistry. 1992 Oct 13;31(40):9733–9743. doi: 10.1021/bi00155a029. [DOI] [PubMed] [Google Scholar]
- Nordlund P., Eklund H. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol. 1993 Jul 5;232(1):123–164. doi: 10.1006/jmbi.1993.1374. [DOI] [PubMed] [Google Scholar]
- Oettinger T., Andersen A. B. Cloning and B-cell-epitope mapping of MPT64 from Mycobacterium tuberculosis H37Rv. Infect Immun. 1994 May;62(5):2058–2064. doi: 10.1128/iai.62.5.2058-2064.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ormö M., Regnström K., Wang Z., Que L., Jr, Sahlin M., Sjöberg B. M. Residues important for radical stability in ribonucleotide reductase from Escherichia coli. J Biol Chem. 1995 Mar 24;270(12):6570–6576. doi: 10.1074/jbc.270.12.6570. [DOI] [PubMed] [Google Scholar]
- Ormö M., Sjöberg B. M. An ultrafiltration assay for nucleotide binding to ribonucleotide reductase. Anal Biochem. 1990 Aug 15;189(1):138–141. doi: 10.1016/0003-2697(90)90059-i. [DOI] [PubMed] [Google Scholar]
- Reichard P. From RNA to DNA, why so many ribonucleotide reductases? Science. 1993 Jun 18;260(5115):1773–1777. doi: 10.1126/science.8511586. [DOI] [PubMed] [Google Scholar]
- Salazar L., Fsihi H., de Rossi E., Riccardi G., Rios C., Cole S. T., Takiff H. E. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol. 1996 Apr;20(2):283–293. doi: 10.1111/j.1365-2958.1996.tb02617.x. [DOI] [PubMed] [Google Scholar]
- Scotti C., Valbuzzi A., Perego M., Galizzi A., Albertini A. M. The Bacillus subtilis genes for ribonucleotide reductase are similar to the genes for the second class I NrdE/NrdF enzymes of Enterobacteriaceae. Microbiology. 1996 Nov;142(Pt 11):2995–3004. doi: 10.1099/13500872-142-11-2995. [DOI] [PubMed] [Google Scholar]
- Sun L., Fuchs J. A. Escherichia coli ribonucleotide reductase expression is cell cycle regulated. Mol Biol Cell. 1992 Oct;3(10):1095–1105. doi: 10.1091/mbc.3.10.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun L., Fuchs J. A. Regulation of the Escherichia coli nrd operon: role of DNA supercoiling. J Bacteriol. 1994 Aug;176(15):4617–4626. doi: 10.1128/jb.176.15.4617-4626.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun L., Jacobson B. A., Dien B. S., Srienc F., Fuchs J. A. Cell cycle regulation of the Escherichia coli nrd operon: requirement for a cis-acting upstream AT-rich sequence. J Bacteriol. 1994 Apr;176(8):2415–2426. doi: 10.1128/jb.176.8.2415-2426.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takiff H. E., Salazar L., Guerrero C., Philipp W., Huang W. M., Kreiswirth B., Cole S. T., Jacobs W. R., Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother. 1994 Apr;38(4):773–780. doi: 10.1128/aac.38.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuggle C. K., Fuchs J. A. Regulation of the operon encoding ribonucleotide reductase in Escherichia coli: evidence for both positive and negative control. EMBO J. 1986 May;5(5):1077–1085. doi: 10.1002/j.1460-2075.1986.tb04325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuggle C. K., Fuchs J. A. Regulation of the operon encoding ribonucleotide reductase: role of the negative sites in nrd repression. J Bacteriol. 1990 Apr;172(4):1711–1718. doi: 10.1128/jb.172.4.1711-1718.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uhlin U., Eklund H. Structure of ribonucleotide reductase protein R1. Nature. 1994 Aug 18;370(6490):533–539. doi: 10.1038/370533a0. [DOI] [PubMed] [Google Scholar]
- Wayne L. G. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis. 1994 Nov;13(11):908–914. doi: 10.1007/BF02111491. [DOI] [PubMed] [Google Scholar]
- Wieles B., van Soolingen D., Holmgren A., Offringa R., Ottenhoff T., Thole J. Unique gene organization of thioredoxin and thioredoxin reductase in Mycobacterium leprae. Mol Microbiol. 1995 Jun;16(5):921–929. doi: 10.1111/j.1365-2958.1995.tb02318.x. [DOI] [PubMed] [Google Scholar]
- Yang F. D., Spanevello R. A., Celiker I., Hirschmann R., Rubin H., Cooperman B. S. The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit. FEBS Lett. 1990 Oct 15;272(1-2):61–64. doi: 10.1016/0014-5793(90)80449-s. [DOI] [PubMed] [Google Scholar]
- Yang F., Lu G., Rubin H. Cloning, expression, purification and characterization of DNA topoisomerase I of Mycobacterium tuberculosis. Gene. 1996 Oct 31;178(1-2):63–69. doi: 10.1016/0378-1119(96)00335-6. [DOI] [PubMed] [Google Scholar]
- Yang F., Lu G., Rubin H. Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression, and purification of the large subunit. J Bacteriol. 1994 Nov;176(21):6738–6743. doi: 10.1128/jb.176.21.6738-6743.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]