Abstract
A 3.2-kb region of the broad-host-range plasmid RK2 has been shown to encode a highly efficient plasmid maintenance system that functions in a vector-independent manner. This region, designated par, consists of two divergently arranged operons: parCBA and parDE. The 0.7-kb parDE operon promotes plasmid stability by a postsegregational killing mechanism that ensures that plasmid-free daughter cells do not survive after cell division. The 2.3-kb parCBA operon encodes a site-specific resolvase protein (ParA) and its multimer resolution site (res) and two proteins (ParB and ParC) whose functions are as yet unknown. It has been proposed that the parCBA operon encodes a plasmid partitioning system (M. Gerlitz, O. Hrabak, and H. Schwabb, J. Bacteriol. 172:6194-6203, 1990; R. C. Roberts, R. Burioni, and D. R. Helinski, J. Bacteriol. 172:6204-6216, 1990). To further define the role of this region in promoting the stable maintenance of plasmid RK2, the parCBA and parDE operons separately and the intact (parCBA/DE) par region (3.2 kb) were reintroduced into an RK2 plasmid deleted for par and assayed for plasmid stability in two Escherichia coli strains (MC1061K and MV10delta lac). The intact 3.2-kb region provided the highest degree of stability in the two strains tested. The ability of the parCBA or parDE region alone to promote stable maintenance in the E. coli strains was dependent on the particular strain and the growth temperature. Furthermore, the insertion of the ColE1 cer site into the RK2 plasmid deleted for the par region failed to stabilize the plasmid in the MC1061K strain, indicating that the multimer resolution activity encoded by parCBA is not by itself responsible for the stabilization activity observed for this operon. To examine the relative contributions of postsegregational cell killing and a possible partitioning function encoded by the intact 3.2-kb par region, stability assays were carried out with ParD provided in trans by a compatible (R6K) minireplicon to prevent postsegregational killing. In E. coli MV10delta lac, postsegregational killing appeared to be the predominant mechanism for stabilization since the presence of ParD substantially reduced the stability of plasmids carrying either the 3.2- or 0.7-kb region. However, in the case of E. coli MC1061K, the presence of ParD in trans did not result in a significant loss of stabilization by the 3.2-kb region, indicating that the putative partitioning function was largely responsible for RK2 maintenance. To examine the basis for the apparent differences in postsegregational killing between the two E. coli strains, transformation assays were carried out to determine the relative sensitivities of the strains to the ParE toxin protein. Consistent with the relatively small contribution of the postsegregational killing to plasmid stabilization in MC1061K, we found that this strain was substantially more resistant to killing by ParE in comparison to E. coli MV10delta lac. A transfer-deficient mutant of thepar-deleted plasmid was constructed for the stable maintenance studies. This plasmid was found to be lost from E. coli MV10delta lac at a rate three times greater than the rate for the transfer-proficient plasmid, suggesting that conjugation can also play a significant role in the maintenance of plasmid RK2.
Full Text
The Full Text of this article is available as a PDF (402.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
- Bravo A., Ortega S., de Torrontegui G., Díaz R. Killing of Escherichia coli cells modulated by components of the stability system ParD of plasmid R1. Mol Gen Genet. 1988 Dec;215(1):146–151. doi: 10.1007/BF00331316. [DOI] [PubMed] [Google Scholar]
- Brownlie L., Stephenson J. R., Cole J. A. Effect of growth rate on plasmid maintenance by Escherichia coli HB101(pAT153). J Gen Microbiol. 1990 Dec;136(12):2471–2480. doi: 10.1099/00221287-136-12-2471. [DOI] [PubMed] [Google Scholar]
- Cerin H., Hackett J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid. 1993 Jul;30(1):30–38. doi: 10.1006/plas.1993.1031. [DOI] [PubMed] [Google Scholar]
- Chen S. T., Clowes R. C. Variations between the nucleotide sequences of Tn1, Tn2, and Tn3 and expression of beta-lactamase in Pseudomonas aeruginosa and Escherichia coli. J Bacteriol. 1987 Feb;169(2):913–916. doi: 10.1128/jb.169.2.913-916.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole S. P., Lanka E., Guiney D. G. Site-directed mutations in the relaxase operon of RP4. J Bacteriol. 1993 Aug;175(15):4911–4916. doi: 10.1128/jb.175.15.4911-4916.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis T. L., Helinski D. R., Roberts R. C. Transcription and autoregulation of the stabilizing functions of broad-host-range plasmid RK2 in Escherichia coli, Agrobacterium tumefaciens and Pseudomonas aeruginosa. Mol Microbiol. 1992 Jul;6(14):1981–1994. doi: 10.1111/j.1365-2958.1992.tb01371.x. [DOI] [PubMed] [Google Scholar]
- Eberl L., Kristensen C. S., Givskov M., Grohmann E., Gerlitz M., Schwab H. Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol. 1994 Apr;12(1):131–141. doi: 10.1111/j.1365-2958.1994.tb01002.x. [DOI] [PubMed] [Google Scholar]
- Gerlitz M., Hrabak O., Schwab H. Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination. J Bacteriol. 1990 Nov;172(11):6194–6203. doi: 10.1128/jb.172.11.6194-6203.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
- Jaffé A., Ogura T., Hiraga S. Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol. 1985 Sep;163(3):841–849. doi: 10.1128/jb.163.3.841-849.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. B., Gerdes K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol. 1995 Jul;17(2):205–210. doi: 10.1111/j.1365-2958.1995.mmi_17020205.x. [DOI] [PubMed] [Google Scholar]
- Jensen R. B., Grohmann E., Schwab H., Díaz-Orejas R., Gerdes K. Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1. Mol Microbiol. 1995 Jul;17(2):211–220. doi: 10.1111/j.1365-2958.1995.mmi_17020211.x. [DOI] [PubMed] [Google Scholar]
- Johnson E. P., Strom A. R., Helinski D. R. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J Bacteriol. 1996 Mar;178(5):1420–1429. doi: 10.1128/jb.178.5.1420-1429.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn M., Ow D., Sauer B., Rabinowitz A., Calendar R. Genetic analysis of bacteriophage P4 using P4-plasmid ColE1 hybrids. Mol Gen Genet. 1980 Feb;177(3):399–412. doi: 10.1007/BF00271478. [DOI] [PubMed] [Google Scholar]
- Kleiner D., Paul W., Merrick M. J. Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol. 1988 Jul;134(7):1779–1784. doi: 10.1099/00221287-134-7-1779. [DOI] [PubMed] [Google Scholar]
- Krause M., Guiney D. G. Identification of a multimer resolution system involved in stabilization of the Salmonella dublin virulence plasmid pSDL2. J Bacteriol. 1991 Sep;173(18):5754–5762. doi: 10.1128/jb.173.18.5754-5762.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehnherr H., Yarmolinsky M. B. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3274–3277. doi: 10.1073/pnas.92.8.3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie N. R., Sherratt D. J. Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif. EMBO J. 1995 Apr 3;14(7):1561–1570. doi: 10.1002/j.1460-2075.1995.tb07142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miki T., Chang Z. T., Horiuchi T. Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42.84-43.6 F segment. J Mol Biol. 1984 Apr 25;174(4):627–646. doi: 10.1016/0022-2836(84)90087-1. [DOI] [PubMed] [Google Scholar]
- Nordström K., Austin S. J. Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet. 1989;23:37–69. doi: 10.1146/annurev.ge.23.120189.000345. [DOI] [PubMed] [Google Scholar]
- Oskam L., Venema G., Bron S. Plasmid maintenance in Bacillus stearothermophilus is strain-dependent. FEMS Microbiol Lett. 1992 Jun 15;72(3):203–208. doi: 10.1016/0378-1097(92)90463-x. [DOI] [PubMed] [Google Scholar]
- Patient M. E., Summers D. K. ColE1 multimer formation triggers inhibition of Escherichia coli cell division. Mol Microbiol. 1993 Sep;9(5):1089–1095. doi: 10.1111/j.1365-2958.1993.tb01238.x. [DOI] [PubMed] [Google Scholar]
- Prentki P., Karch F., Iida S., Meyer J. The plasmid cloning vector pBR325 contains a 482 base-pair-long inverted duplication. Gene. 1981 Sep;14(4):289–299. doi: 10.1016/0378-1119(81)90161-x. [DOI] [PubMed] [Google Scholar]
- Roberts R. C., Burioni R., Helinski D. R. Genetic characterization of the stabilizing functions of a region of broad-host-range plasmid RK2. J Bacteriol. 1990 Nov;172(11):6204–6216. doi: 10.1128/jb.172.11.6204-6216.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts R. C., Helinski D. R. Definition of a minimal plasmid stabilization system from the broad-host-range plasmid RK2. J Bacteriol. 1992 Dec;174(24):8119–8132. doi: 10.1128/jb.174.24.8119-8132.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts R. C., Ström A. R., Helinski D. R. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J Mol Biol. 1994 Mar 18;237(1):35–51. doi: 10.1006/jmbi.1994.1207. [DOI] [PubMed] [Google Scholar]
- Sherratt D. J., Arciszewska L. K., Blakely G., Colloms S., Grant K., Leslie N., McCulloch R. Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 1995 Jan 30;347(1319):37–42. doi: 10.1098/rstb.1995.0006. [DOI] [PubMed] [Google Scholar]
- Sia E. A., Roberts R. C., Easter C., Helinski D. R., Figurski D. H. Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J Bacteriol. 1995 May;177(10):2789–2797. doi: 10.1128/jb.177.10.2789-2797.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobecky P. A., Easter C. L., Bear P. D., Helinski D. R. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol. 1996 Apr;178(7):2086–2093. doi: 10.1128/jb.178.7.2086-2093.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers D. K., Sherratt D. J. Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J. 1988 Mar;7(3):851–858. doi: 10.1002/j.1460-2075.1988.tb02884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takai S., Sugawara T., Watanabe Y., Sasaki Y., Tsubaki S., Sekizaki T. Effect of growth temperature on maintenance of virulent Rhodococcus equi. Vet Microbiol. 1994 Mar;39(1-2):187–192. doi: 10.1016/0378-1135(94)90099-x. [DOI] [PubMed] [Google Scholar]
- Waters V. L., Strack B., Pansegrau W., Lanka E., Guiney D. G. Mutational analysis of essential IncP alpha plasmid transfer genes traF and traG and involvement of traF in phage sensitivity. J Bacteriol. 1992 Oct;174(20):6666–6673. doi: 10.1128/jb.174.20.6666-6673.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. W., Sia E. A., Figurski D. H. The kilE locus of promiscuous IncP alpha plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa. J Bacteriol. 1997 Apr;179(7):2339–2347. doi: 10.1128/jb.179.7.2339-2347.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]