Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6480–6487. doi: 10.1128/jb.179.20.6480-6487.1997

Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex.

L Petit 1, M Gibert 1, D Gillet 1, C Laurent-Winter 1, P Boquet 1, M R Popoff 1
PMCID: PMC179566  PMID: 9335299

Abstract

Epsilon-toxin is produced by Clostridium perfringens types B and D and is responsible for a rapidly fatal enterotoxemia in animals, which is characterized by edema in several organs due to an increase in blood vessel permeability. The Madin-Darby canine kidney (MDCK) cell line has been found to be susceptible to epsilon-toxin (D. W. Payne, E. D. Williamson, H. Havard, N. Modi, and J. Brown, FEMS Microbiol. Lett. 116:161-168, 1994). Here we present evidence that epsilon-toxin cytotoxic activity is correlated with the formation of a large membrane complex (about 155 kDa) and efflux of intracellular K+ without entry of the toxin into the cytosol. Epsilon-toxin induced swelling, blebbing, and lysis of MDCK cells. Iodolabeled epsilon-toxin bound specifically to MDCK cell membranes at 4 and 37 labeled C and was associated with a large complex (about 155 kDa). The binding of epsilon-toxin to the cell surface was corroborated by immunofluorescence staining. The complex formed at 37 degrees C was more stable than that formed at 4 degrees C, since it was not dissociated by 5% sodium dodecyl sulfate and boiling.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belmonte G., Cescatti L., Ferrari B., Nicolussi T., Ropele M., Menestrina G. Pore formation by Staphylococcus aureus alpha-toxin in lipid bilayers. Dependence upon temperature and toxin concentration. Eur Biophys J. 1987;14(6):349–358. doi: 10.1007/BF00262320. [DOI] [PubMed] [Google Scholar]
  2. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhown A. S., Habeerb A. F. Structural studies on epsilon-prototoxin of Clostridium perfringens type D. Localization of the site of tryptic scission necessary for activation to epsilon-toxin. Biochem Biophys Res Commun. 1977 Oct 10;78(3):889–896. doi: 10.1016/0006-291x(77)90506-x. [DOI] [PubMed] [Google Scholar]
  4. Buxton D. The use of an immunoperoxidase technique to investigate by light and electron microscopy the sites of binding of Clostridium welchii type-D epsilon toxin in mice. J Med Microbiol. 1978 Aug;11(3):289–292. doi: 10.1099/00222615-11-3-289. [DOI] [PubMed] [Google Scholar]
  5. Doherty T. J., Pascoe P. J., McDonell W. N., Monteith G. Cardiopulmonary effects of xylazine and yohimbine in laterally recumbent sheep. Can J Vet Res. 1986 Oct;50(4):517–521. [PMC free article] [PubMed] [Google Scholar]
  6. Donta S. T., Beristain S., Tomicic T. K. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect Immun. 1993 Aug;61(8):3282–3286. doi: 10.1128/iai.61.8.3282-3286.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fiorentini C., Malorni W., Paradisi S., Giuliano M., Mastrantonio P., Donelli G. Interaction of Clostridium difficile toxin A with cultured cells: cytoskeletal changes and nuclear polarization. Infect Immun. 1990 Jul;58(7):2329–2336. doi: 10.1128/iai.58.7.2329-2336.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foskett J. K., Wong D. C. [Ca2+]i inhibition of Ca2+ release-activated Ca2+ influx underlies agonist- and thapsigargin-induced [Ca2+]i oscillations in salivary acinar cells. J Biol Chem. 1994 Dec 16;269(50):31525–31532. [PubMed] [Google Scholar]
  9. GRINER L. A., CARLSON W. D. Enterotoxemia of sheep. II. Distribution of I-131 radioiodinated serum albumin in brains of Clostridium perfringens type D intoxicated lambs. Am J Vet Res. 1961 May;22:443–446. [PubMed] [Google Scholar]
  10. Gardner D. E. Pathology of Clostridium welchii type D enterotoxaemia. II. Structural and ultrastructural alterations in the tissues of lambs and mice. J Comp Pathol. 1973 Oct;83(4):509–524. doi: 10.1016/0021-9975(73)90009-1. [DOI] [PubMed] [Google Scholar]
  11. Giocondi M. C., Mamdouh Z., Le Grimellec C. Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim Biophys Acta. 1995 Mar 22;1234(2):197–202. doi: 10.1016/0005-2736(94)00284-v. [DOI] [PubMed] [Google Scholar]
  12. Giry M., Popoff M. R., von Eichel-Streiber C., Boquet P. Transient expression of RhoA, -B, and -C GTPases in HeLa cells potentiates resistance to Clostridium difficile toxins A and B but not to Clostridium sordellii lethal toxin. Infect Immun. 1995 Oct;63(10):4063–4071. doi: 10.1128/iai.63.10.4063-4071.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hambrook J. L., Lindsay C. D., Hughes N. Morphological alterations in MDCK cells induced by exposure to Clostridium perfringens epsilon-toxin. Biochem Soc Trans. 1995 Feb;23(1):44S–44S. doi: 10.1042/bst023044s. [DOI] [PubMed] [Google Scholar]
  14. Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  15. Hatheway C. L. Toxigenic clostridia. Clin Microbiol Rev. 1990 Jan;3(1):66–98. doi: 10.1128/cmr.3.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunter S. E., Clarke I. N., Kelly D. C., Titball R. W. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun. 1992 Jan;60(1):102–110. doi: 10.1128/iai.60.1.102-110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katahira J., Inoue N., Horiguchi Y., Matsuda M., Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol. 1997 Mar 24;136(6):1239–1247. doi: 10.1083/jcb.136.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keen J. H., Maxfield F. R., Hardegree M. C., Habig W. H. Receptor-mediated endocytosis of diphtheria toxin by cells in culture. Proc Natl Acad Sci U S A. 1982 May;79(9):2912–2916. doi: 10.1073/pnas.79.9.2912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lindsay C. D. Assessment of aspects of the toxicity of Clostridium perfringens epsilon-toxin using the MDCK cell line. Hum Exp Toxicol. 1996 Nov;15(11):904–908. doi: 10.1177/096032719601501107. [DOI] [PubMed] [Google Scholar]
  21. Liu J. W., Porter A. G., Wee B. Y., Thanabalu T. New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins. Appl Environ Microbiol. 1996 Jun;62(6):2174–2176. doi: 10.1128/aem.62.6.2174-2176.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McClane B. A. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology. 1994 Feb 28;87(1-3):43–67. doi: 10.1016/0300-483x(94)90154-6. [DOI] [PubMed] [Google Scholar]
  23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  24. Müller H., von Eichel-Streiber C., Habermann E. Morphological changes of cultured endothelial cells after microinjection of toxins that act on the cytoskeleton. Infect Immun. 1992 Jul;60(7):3007–3010. doi: 10.1128/iai.60.7.3007-3010.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nagahama M., Iida H., Sakurai J. Effect of Clostridium perfringens epsilon toxin on rat isolated aorta. Microbiol Immunol. 1993;37(6):447–450. doi: 10.1111/j.1348-0421.1993.tb03235.x. [DOI] [PubMed] [Google Scholar]
  26. Nagahama M., Sakurai J. Distribution of labeled Clostridium perfringens epsilon toxin in mice. Toxicon. 1991;29(2):211–217. doi: 10.1016/0041-0101(91)90105-z. [DOI] [PubMed] [Google Scholar]
  27. Nagahama M., Sakurai J. High-affinity binding of Clostridium perfringens epsilon-toxin to rat brain. Infect Immun. 1992 Mar;60(3):1237–1240. doi: 10.1128/iai.60.3.1237-1240.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Payne D. W., Williamson E. D., Havard H., Modi N., Brown J. Evaluation of a new cytotoxicity assay for Clostridium perfringens type D epsilon toxin. FEMS Microbiol Lett. 1994 Feb 15;116(2):161–167. doi: 10.1111/j.1574-6968.1994.tb06695.x. [DOI] [PubMed] [Google Scholar]
  29. Perelle S., Gibert M., Boquet P., Popoff M. R. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun. 1993 Dec;61(12):5147–5156. doi: 10.1128/iai.61.12.5147-5156.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Popoff M. R. Purification and characterization of Clostridium sordellii lethal toxin and cross-reactivity with Clostridium difficile cytotoxin. Infect Immun. 1987 Jan;55(1):35–43. doi: 10.1128/iai.55.1.35-43.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rigaud J. L., Paternostre M. T., Bluzat A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988 Apr 19;27(8):2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  32. Robinson M. S., Watts C., Zerial M. Membrane dynamics in endocytosis. Cell. 1996 Jan 12;84(1):13–21. doi: 10.1016/s0092-8674(00)80988-5. [DOI] [PubMed] [Google Scholar]
  33. Sakurai J., Nagahama M. Amino groups in Clostridium perfringens epsilon prototoxin and epsilon toxin. Microb Pathog. 1986 Oct;1(5):417–423. doi: 10.1016/0882-4010(86)90003-3. [DOI] [PubMed] [Google Scholar]
  34. Sakurai J., Nagahama M. Carboxyl groups in Clostridium perfringens epsilon toxin. Microb Pathog. 1987 Dec;3(6):469–474. doi: 10.1016/0882-4010(87)90017-9. [DOI] [PubMed] [Google Scholar]
  35. Sakurai J., Nagahama M., Fujii Y. Effect of Clostridium perfringens epsilon toxin on the cardiovascular system of rats. Infect Immun. 1983 Dec;42(3):1183–1186. doi: 10.1128/iai.42.3.1183-1186.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sakurai J., Nagahama M. Role of one tryptophan residue in the lethal activity of Clostridium perfringens epsilon toxin. Biochem Biophys Res Commun. 1985 Apr 30;128(2):760–766. doi: 10.1016/0006-291x(85)90112-3. [DOI] [PubMed] [Google Scholar]
  37. Sakurai J., Nagahama M., Takahashi T. Contraction induced by Clostridium perfringens epsilon toxin in the isolated rat ileum. FEMS Microbiol Lett. 1989 Apr;49(2-3):269–272. doi: 10.1016/0378-1097(89)90051-7. [DOI] [PubMed] [Google Scholar]
  38. Sandvig K., Prydz K., Hansen S. H., van Deurs B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J Cell Biol. 1991 Nov;115(4):971–981. doi: 10.1083/jcb.115.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sandvig K., van Deurs B. Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS Lett. 1994 Jun 6;346(1):99–102. doi: 10.1016/0014-5793(94)00281-9. [DOI] [PubMed] [Google Scholar]
  40. Thanabalu T., Porter A. G. A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa. Gene. 1996 Apr 17;170(1):85–89. doi: 10.1016/0378-1119(95)00836-5. [DOI] [PubMed] [Google Scholar]
  41. Wieckowski E. U., Wnek A. P., McClane B. A. Evidence that an approximately 50-kDa mammalian plasma membrane protein with receptor-like properties mediates the amphiphilicity of specifically bound Clostridium perfringens enterotoxin. J Biol Chem. 1994 Apr 8;269(14):10838–10848. [PubMed] [Google Scholar]
  42. Wnek A. P., McClane B. A. Preliminary evidence that Clostridium perfringens type A enterotoxin is present in a 160,000-Mr complex in mammalian membranes. Infect Immun. 1989 Feb;57(2):574–581. doi: 10.1128/iai.57.2.574-581.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES