Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6518–6521. doi: 10.1128/jb.179.20.6518-6521.1997

A mutational study of the site-specific cleavage of EC83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage.

K Kim 1, D Jeong 1, D Lim 1
PMCID: PMC179573  PMID: 9335306

Abstract

Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. Such molecules are encoded by genetic elements called retrons. Unlike other retrons, retron EC83 isolated from Escherichia coli 161 produces RNA-free msDNA by site-specific cleavage of msDNA at 5'-TTGA/A-3', where the slash indicates the cleavage site. In order to investigate factors responsible for the msDNA cleavage, retron EC83 was treated with hydroxylamine and colonies were screened for cleavage-negative mutants. We isolated three mutants which were defective in msDNA cleavage and produced RNA-linked msDNA. They were all affected in msd, a gene for msDNA, with a base substitution at the bottom part of the msDNA stem. In contrast, base substitution at and around the cleavage site has no marked effect on msDNA synthesis or its cleavage. From these results, we concluded that the nucleotides at the bottom of the msDNA stem, but not the nucleotides at the cleavage site, play a major role in the recognition and cleavage of msDNA EC83.

Full Text

The Full Text of this article is available as a PDF (453.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cupples C. G., Cabrera M., Cruz C., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics. 1990 Jun;125(2):275–280. doi: 10.1093/genetics/125.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Furuichi T., Inouye S., Inouye M. Biosynthesis and structure of stable branched RNA covalently linked to the 5' end of multicopy single-stranded DNA of Stigmatella aurantiaca. Cell. 1987 Jan 16;48(1):55–62. doi: 10.1016/0092-8674(87)90355-2. [DOI] [PubMed] [Google Scholar]
  3. Hsu M. Y., Eagle S. G., Inouye M., Inouye S. Cell-free synthesis of the branched RNA-linked msDNA from retron-Ec67 of Escherichia coli. J Biol Chem. 1992 Jul 15;267(20):13823–13829. [PubMed] [Google Scholar]
  4. Inouye M., Inouye S. msDNA and bacterial reverse transcriptase. Annu Rev Microbiol. 1991;45:163–186. doi: 10.1146/annurev.mi.45.100191.001115. [DOI] [PubMed] [Google Scholar]
  5. Lampson B. C., Inouye M., Inouye S. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell. 1989 Feb 24;56(4):701–707. doi: 10.1016/0092-8674(89)90592-8. [DOI] [PubMed] [Google Scholar]
  6. Lampson B. C., Inouye M., Inouye S. Survey of multicopy single-stranded DNAs and reverse transcriptase genes among natural isolates of Myxococcus xanthus. J Bacteriol. 1991 Sep;173(17):5363–5370. doi: 10.1128/jb.173.17.5363-5370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lampson B. C., Sun J., Hsu M. Y., Vallejo-Ramirez J., Inouye S., Inouye M. Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science. 1989 Feb 24;243(4894 Pt 1):1033–1038. doi: 10.1126/science.2466332. [DOI] [PubMed] [Google Scholar]
  8. Lampson B. C., Viswanathan M., Inouye M., Inouye S. Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA. J Biol Chem. 1990 May 25;265(15):8490–8496. [PubMed] [Google Scholar]
  9. Lim D., Gomes T. A., Maas W. K. Distribution of msDNAs among serotypes of enteropathogenic Escherichia coli strains. Mol Microbiol. 1990 Oct;4(10):1711–1714. doi: 10.1111/j.1365-2958.1990.tb00548.x. [DOI] [PubMed] [Google Scholar]
  10. Lim D., Maas W. K. Reverse transcriptase in bacteria. Mol Microbiol. 1989 Aug;3(8):1141–1144. doi: 10.1111/j.1365-2958.1989.tb00264.x. [DOI] [PubMed] [Google Scholar]
  11. Lim D., Maas W. K. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell. 1989 Mar 10;56(5):891–904. doi: 10.1016/0092-8674(89)90693-4. [DOI] [PubMed] [Google Scholar]
  12. Lim D. Structure and biosynthesis of unbranched multicopy single-stranded DNA by reverse transcriptase in a clinical Escherichia coli isolate. Mol Microbiol. 1992 Dec;6(23):3531–3542. doi: 10.1111/j.1365-2958.1992.tb01788.x. [DOI] [PubMed] [Google Scholar]
  13. Lima T. M., Lim D. A novel retron that produces RNA-less msDNA in Escherichia coli using reverse transcriptase. Plasmid. 1997;38(1):25–33. doi: 10.1006/plas.1997.1298. [DOI] [PubMed] [Google Scholar]
  14. Lima T. M., Lim D. Isolation and characterization of host mutants defective in msDNA synthesis: role of ribonuclease H in msDNA synthesis. Plasmid. 1995 May;33(3):235–238. doi: 10.1006/plas.1995.1026. [DOI] [PubMed] [Google Scholar]
  15. Maas W. K., Wang C., Lima T., Hach A., Lim D. Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol Microbiol. 1996 Feb;19(3):505–509. doi: 10.1046/j.1365-2958.1996.392921.x. [DOI] [PubMed] [Google Scholar]
  16. Maas W. K., Wang C., Lima T., Zubay G., Lim D. Multicopy single-stranded DNAs with mismatched base pairs are mutagenic in Escherichia coli. Mol Microbiol. 1994 Nov;14(3):437–441. doi: 10.1111/j.1365-2958.1994.tb02178.x. [DOI] [PubMed] [Google Scholar]
  17. Rice S. A., Bieber J., Chun J. Y., Stacey G., Lampson B. C. Diversity of retron elements in a population of rhizobia and other gram-negative bacteria. J Bacteriol. 1993 Jul;175(13):4250–4254. doi: 10.1128/jb.175.13.4250-4254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shimada M., Inouye S., Inouye M. Requirements of the secondary structures in the primary transcript for multicopy single-stranded DNA synthesis by reverse transcriptase from bacterial retron-Ec107. J Biol Chem. 1994 May 20;269(20):14553–14558. [PubMed] [Google Scholar]
  19. Shimamoto T., Hsu M. Y., Inouye S., Inouye M. Reverse transcriptases from bacterial retrons require specific secondary structures at the 5'-end of the template for the cDNA priming reaction. J Biol Chem. 1993 Feb 5;268(4):2684–2692. [PubMed] [Google Scholar]
  20. Shimamoto T., Inouye M., Inouye S. The formation of the 2',5'-phosphodiester linkage in the cDNA priming reaction by bacterial reverse transcriptase in a cell-free system. J Biol Chem. 1995 Jan 13;270(2):581–588. doi: 10.1074/jbc.270.2.581. [DOI] [PubMed] [Google Scholar]
  21. Shimamoto T., Shimada M., Inouye M., Inouye S. The role of ribonuclease H in multicopy single-stranded DNA synthesis in retron-Ec73 and retron-Ec107 of Escherichia coli. J Bacteriol. 1995 Jan;177(1):264–267. doi: 10.1128/jb.177.1.264-267.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Temin H. M. Reverse transcriptases. Retrons in bacteria. Nature. 1989 May 25;339(6222):254–255. doi: 10.1038/339254a0. [DOI] [PubMed] [Google Scholar]
  23. Yee T., Furuichi T., Inouye S., Inouye M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell. 1984 Aug;38(1):203–209. doi: 10.1016/0092-8674(84)90541-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES