Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6522–6524. doi: 10.1128/jb.179.20.6522-6524.1997

The Serratia marcescens NucE protein functions as a holin in Escherichia coli.

M Berkmen 1, M J Benedik 1, U Bläsi 1
PMCID: PMC179574  PMID: 9335307

Abstract

The recently discovered nucC locus of Serratia marcescens encodes the cryptic prophage genes nucE, nucD, and nucC. NucC is required for expression of the S. marcescens nuclease and functions as a transcriptional activator of the nuclease gene, nucA. NucE and NucD are dispensable for nuclease expression but were proposed to allow for secretion of the nuclease by Escherichia coli. Here, we show (i) that the NucE protein is membrane bound, (ii) that it can complement the lambda S holin, (iii) that it can be triggered by potassium cyanide, (iv) that it is detrimental to cell viability, and (v) that the concomitant expression of nucE and nucD results in cell lysis. Apparently NucE and NucD function as a holin and an endolysin, respectively. This suggests that their roles in nuclease secretion by E. coli are indirect, possibly through directed cell lysis.

Full Text

The Full Text of this article is available as a PDF (380.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bläsi U., Young R. Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol. 1996 Aug;21(4):675–682. doi: 10.1046/j.1365-2958.1996.331395.x. [DOI] [PubMed] [Google Scholar]
  2. Fastrez J. Phage lysozymes. EXS. 1996;75:35–64. doi: 10.1007/978-3-0348-9225-4_3. [DOI] [PubMed] [Google Scholar]
  3. Ferrer S., Viejo M. B., Guasch J. F., Enfedaque J., Regué M. Genetic evidence for an activator required for induction of colicin-like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. J Bacteriol. 1996 Feb;178(4):951–960. doi: 10.1128/jb.178.4.951-960.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garrett J. M., Young R. Lethal action of bacteriophage lambda S gene. J Virol. 1982 Dec;44(3):886–892. doi: 10.1128/jvi.44.3.886-892.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garrett J., Fusselman R., Hise J., Chiou L., Smith-Grillo D., Schulz J., Young R. Cell lysis by induction of cloned lambda lysis genes. Mol Gen Genet. 1981;182(2):326–331. doi: 10.1007/BF00269678. [DOI] [PubMed] [Google Scholar]
  6. Henrich B., Binishofer B., Bläsi U. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh. J Bacteriol. 1995 Feb;177(3):723–732. doi: 10.1128/jb.177.3.723-732.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jin S., Chen Y., Christie G. E., Benedik M. J. Regulation of the Serratia marcescens extracellular nuclease: positive control by a homolog of P2 Ogr encoded by a cryptic prophage. J Mol Biol. 1996 Feb 23;256(2):264–278. doi: 10.1006/jmbi.1996.0084. [DOI] [PubMed] [Google Scholar]
  8. Lee T. C., Christie G. E. Purification and properties of the bacteriophage P2 ogr gene product. A prokaryotic zinc-binding transcriptional activator. J Biol Chem. 1990 May 5;265(13):7472–7477. [PubMed] [Google Scholar]
  9. Steiner M., Lubitz W., Bläsi U. The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage phi 29 encodes the functional homolog of lambda S protein. J Bacteriol. 1993 Feb;175(4):1038–1042. doi: 10.1128/jb.175.4.1038-1042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 1992 Sep;56(3):430–481. doi: 10.1128/mr.56.3.430-481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Young R., Bläsi U. Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev. 1995 Aug;17(1-2):191–205. doi: 10.1111/j.1574-6976.1995.tb00202.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES