Abstract
We have cloned the gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase (GADH) from Erwinia cypripedii ATCC 29267 in Escherichia coli by performing a direct-expression assay. The positive clone converted D-gluconate to 2-keto-D-gluconate (2KDG) in the culture medium. Nucleotide sequence analysis of the GADH clone revealed that the cloned fragment contained the complete structural genes for a 68-kDa dehydrogenase subunit, a 47-kDa cytochrome c subunit, and a 24-kDa subunit of unknown function and that the genes were clustered with the same transcriptional polarity. Comparison of the deduced amino acid sequences and the NH2-terminal sequences determined for the purified protein indicated that the dehydrogenase, cytochrome c, and 24-kDa subunits contained typical signal peptides of 22, 19, and 42 amino acids, respectively. The molecular masses of the processed subunits deduced from the nucleotide sequences (65, 45, and 20 kDa) coincided well with the molecular masses of subunits estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In E. cypripedii and recombinant E. coli, the GADH was constitutively formed and the activity of GADH was enhanced more than twofold by addition of D-gluconate to the medium. The holoenzyme glucose dehydrogenase of E. coli was reconstituted by addition of pyrroloquinoline quinone to the culture medium, and the conversion of D-glucose or D-gluconate to 2KDG by recombinant E. coli harboring the cloned GADH gene was attempted in batch culture. The conversion yields for D-glucose were 0.95 mol of 2KDG/mol of D-glucose after 16 h of cultivation, and those for D-gluconate were 0.95 mol of 2KDG/mol of D-gluconate after 12 h of cultivation.
Full Text
The Full Text of this article is available as a PDF (611.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biville F., Turlin E., Gasser F. Mutants of Escherichia coli producing pyrroloquinoline quinone. J Gen Microbiol. 1991 Aug;137(8):1775–1782. doi: 10.1099/00221287-137-8-1775. [DOI] [PubMed] [Google Scholar]
- Goosen N., Horsman H. P., Huinen R. G., van de Putte P. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol. 1989 Jan;171(1):447–455. doi: 10.1128/jb.171.1.447-455.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimsby J., Chen K., Wang L. J., Lan N. C., Shih J. C. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3637–3641. doi: 10.1073/pnas.88.9.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo K., Beppu T., Horinouchi S. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol. 1995 Sep;177(17):5048–5055. doi: 10.1128/jb.177.17.5048-5055.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li B., Nagalla S. R., Renganathan V. Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol. 1996 Apr;62(4):1329–1335. doi: 10.1128/aem.62.4.1329-1335.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. T., Lee L. Y., Tai C. Y., Hung C. H., Chang Y. S., Wolfram J. H., Rogers R., Goldstein A. H. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol. 1992 Sep;174(18):5814–5819. doi: 10.1128/jb.174.18.5814-5819.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MISENHEIMER T. J., ANDERSON R. F., LAGODA A. A., TYLER D. D. PRODUCTION OF 2-KETOGLUCONIC ACID BY SERRATIA MARCESCENS. Appl Microbiol. 1965 May;13:393–396. doi: 10.1128/am.13.3.393-396.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita K., Nagatani Y., Shinagawa E., Adachi O., Ameyama M. Reconstitution of the ethanol oxidase respiratory chain in membranes of quinoprotein alcohol dehydrogenase-deficient Gluconobacter suboxydans subsp. alpha strains. J Bacteriol. 1991 Jun;173(11):3440–3445. doi: 10.1128/jb.173.11.3440-3445.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita K., Shinagawa E., Adachi O., Ameyama M. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form. J Biochem. 1979 May;85(5):1173–1181. [PubMed] [Google Scholar]
- Matsushita K., Shinagawa E., Ameyama M. D-Gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membrane-bound. Methods Enzymol. 1982;89(Pt 500):187–193. doi: 10.1016/s0076-6879(82)89033-2. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Yakushi T., Takaki Y., Toyama H., Adachi O. Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans. J Bacteriol. 1995 Nov;177(22):6552–6559. doi: 10.1128/jb.177.22.6552-6559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire W., Singer T. P., Ameyama M., Adachi O., Matsushita K., Shinagawa E. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. Biochem J. 1985 Nov 1;231(3):651–654. doi: 10.1042/bj2310651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer T. E., Kamen M. D. New perspectives on c-type cytochromes. Adv Protein Chem. 1982;35:105–212. doi: 10.1016/s0065-3233(08)60469-6. [DOI] [PubMed] [Google Scholar]
- Raices M., Paifer E., Cremata J., Montesino R., Ståhlberg J., Divne C., Szabó I. J., Henriksson G., Johansson G., Pettersson G. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett. 1995 Aug 7;369(2-3):233–238. doi: 10.1016/0014-5793(95)00758-2. [DOI] [PubMed] [Google Scholar]
- Saito Y., Ishii Y., Hayashi H., Imao Y., Akashi T., Yoshikawa K., Noguchi Y., Soeda S., Yoshida M., Niwa M. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol. 1997 Feb;63(2):454–460. doi: 10.1128/aem.63.2.454-460.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva J. C., Minto R. E., Barry C. E., 3rd, Holland K. A., Townsend C. A. Isolation and characterization of the versicolorin B synthase gene from Aspergillus parasiticus. Expansion of the aflatoxin b1 biosynthetic gene cluster. J Biol Chem. 1996 Jun 7;271(23):13600–13608. doi: 10.1074/jbc.271.23.13600. [DOI] [PubMed] [Google Scholar]
- Takemura H., Kondo K., Horinouchi S., Beppu T. Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus. J Bacteriol. 1993 Nov;175(21):6857–6866. doi: 10.1128/jb.175.21.6857-6866.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamaki T., Fukaya M., Takemura H., Tayama K., Okumura H., Kawamura Y., Nishiyama M., Horinouchi S., Beppu T. Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. Biochim Biophys Acta. 1991 Feb 16;1088(2):292–300. doi: 10.1016/0167-4781(91)90066-u. [DOI] [PubMed] [Google Scholar]
- Truesdell S. J., Sims J. C., Boerman P. A., Seymour J. L., Lazarus R. A. Pathways for metabolism of ketoaldonic acids in an Erwinia sp. J Bacteriol. 1991 Nov;173(21):6651–6656. doi: 10.1128/jb.173.21.6651-6656.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
- Whetten R., Organ E., Krasney P., Cox-Foster D., Cavener D. Molecular structure and transformation of the glucose dehydrogenase gene in Drosophila melanogaster. Genetics. 1988 Oct;120(2):475–484. doi: 10.1093/genetics/120.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]