Abstract
The aspartate chemoreceptor Tar has a thermosensing function that is modulated by covalent modification of its four methylation sites (Gln295, Glu302, Gln309, and Glu491). Without posttranslational deamidation, Tar has no thermosensing ability. When Gln295 and Gln309 are deamidated to Glu, the unmethylated and heavily methylated forms function as warm and cold sensors, respectively. In this study, we carried out alanine-scanning mutagenesis of the methylation sites. Although alanine substitutions influenced the signaling bias and the methylation level, all of the mutants retained aspartate-sensing function. Those with single substitutions had almost normal thermosensing properties, indicating that substitutions at any particular methylation site do not seriously impair thermosensing function. In the posttranslational modification-defective background, some of the alanine substitutions restored thermosensing ability. Warm sensors were found among mutants retaining two glutamate residues, and cold sensors were found among those with one or no glutamate residue. This result suggests that the negative charge at the methylation sites is one factor that determines thermosensor phenotypes, although the size and shape of the side chain may also be important. The warm, cold, and null thermosensor phenotypes were clearly differentiated, and no intermediate phenotypes were found. Thus, the different thermosensing phenotypes that result from covalent modification of the methylation sites may reflect distinct structural states. Broader implications for the thermosensing mechanism are also discussed.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames P., Yu Y. A., Parkinson J. S. Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl-accepting serine chemoreceptor of Escherichia coli. Mol Microbiol. 1996 Feb;19(4):737–746. doi: 10.1046/j.1365-2958.1996.408930.x. [DOI] [PubMed] [Google Scholar]
- Bibikov S. I., Biran R., Rudd K. E., Parkinson J. S. A signal transducer for aerotaxis in Escherichia coli. J Bacteriol. 1997 Jun;179(12):4075–4079. doi: 10.1128/jb.179.12.4075-4079.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd A., Simon M. I. Multiple electrophoretic forms of methyl-accepting chemotaxis proteins generated by stimulus-elicited methylation in Escherichia coli. J Bacteriol. 1980 Aug;143(2):809–815. doi: 10.1128/jb.143.2.809-815.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burrows G. G., Newcomer M. E., Hazelbauer G. L. Purification of receptor protein Trg by exploiting a property common to chemotactic transducers of Escherichia coli. J Biol Chem. 1989 Oct 15;264(29):17309–17315. [PubMed] [Google Scholar]
- Chelsky D., Dahlquist F. W. Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli: evidence for multiple methylation sites. Proc Natl Acad Sci U S A. 1980 May;77(5):2434–2438. doi: 10.1073/pnas.77.5.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chervitz S. A., Falke J. J. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor. J Biol Chem. 1995 Oct 13;270(41):24043–24053. doi: 10.1074/jbc.270.41.24043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chervitz S. A., Falke J. J. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2545–2550. doi: 10.1073/pnas.93.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chervitz S. A., Lin C. M., Falke J. J. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface. Biochemistry. 1995 Aug 1;34(30):9722–9733. doi: 10.1021/bi00030a010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochran A. G., Kim P. S. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain. Science. 1996 Feb 23;271(5252):1113–1116. doi: 10.1126/science.271.5252.1113. [DOI] [PubMed] [Google Scholar]
- DeFranco A. L., Koshland D. E., Jr Multiple methylation in processing of sensory signals during bacterial chemotaxis. Proc Natl Acad Sci U S A. 1980 May;77(5):2429–2433. doi: 10.1073/pnas.77.5.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engström P., Hazelbauer G. L. Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. coli to chemical stimuli. Cell. 1980 May;20(1):165–171. doi: 10.1016/0092-8674(80)90244-5. [DOI] [PubMed] [Google Scholar]
- Gardina P. J., Manson M. D. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain. Science. 1996 Oct 18;274(5286):425–426. doi: 10.1126/science.274.5286.425. [DOI] [PubMed] [Google Scholar]
- Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. doi: 10.1016/0092-8674(92)90247-a. [DOI] [PubMed] [Google Scholar]
- Hughson A. G., Hazelbauer G. L. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11546–11551. doi: 10.1073/pnas.93.21.11546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwama T., Homma M., Kawagishi I. Uncoupling of ligand-binding affinity of the bacterial serine chemoreceptor from methylation- and temperature-modulated signaling states. J Biol Chem. 1997 May 23;272(21):13810–13815. doi: 10.1074/jbc.272.21.13810. [DOI] [PubMed] [Google Scholar]
- Krikos A., Conley M. P., Boyd A., Berg H. C., Simon M. I. Chimeric chemosensory transducers of Escherichia coli. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1326–1330. doi: 10.1073/pnas.82.5.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Lee G. F., Dutton D. P., Hazelbauer G. L. Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5416–5420. doi: 10.1073/pnas.92.12.5416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long D. G., Weis R. M. Oligomerization of the cytoplasmic fragment from the aspartate receptor of Escherichia coli. Biochemistry. 1992 Oct 20;31(41):9904–9911. doi: 10.1021/bi00156a007. [DOI] [PubMed] [Google Scholar]
- Maeda K., Imae Y., Shioi J. I., Oosawa F. Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol. 1976 Sep;127(3):1039–1046. doi: 10.1128/jb.127.3.1039-1046.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda K., Imae Y. Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci U S A. 1979 Jan;76(1):91–95. doi: 10.1073/pnas.76.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manson M. D. Bacterial motility and chemotaxis. Adv Microb Physiol. 1992;33:277–346. doi: 10.1016/s0065-2911(08)60219-2. [DOI] [PubMed] [Google Scholar]
- Maruyama I. N., Mikawa Y. G., Maruyama H. I. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking. J Mol Biol. 1995 Nov 3;253(4):530–546. doi: 10.1006/jmbi.1995.0571. [DOI] [PubMed] [Google Scholar]
- Milligan D. L., Koshland D. E., Jr Intrasubunit signal transduction by the aspartate chemoreceptor. Science. 1991 Dec 13;254(5038):1651–1654. doi: 10.1126/science.1661030. [DOI] [PubMed] [Google Scholar]
- Milligan D. L., Koshland D. E., Jr Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem. 1988 May 5;263(13):6268–6275. [PubMed] [Google Scholar]
- Mizuno T., Imae Y. Conditional inversion of the thermoresponse in Escherichia coli. J Bacteriol. 1984 Jul;159(1):360–367. doi: 10.1128/jb.159.1.360-367.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nara T., Kawagishi I., Nishiyama S., Homma M., Imae Y. Modulation of the thermosensing profile of the Escherichia coli aspartate receptor tar by covalent modification of its methyl-accepting sites. J Biol Chem. 1996 Jul 26;271(30):17932–17936. doi: 10.1074/jbc.271.30.17932. [DOI] [PubMed] [Google Scholar]
- Nara T., Lee L., Imae Y. Thermosensing ability of Trg and Tap chemoreceptors in Escherichia coli. J Bacteriol. 1991 Feb;173(3):1120–1124. doi: 10.1128/jb.173.3.1120-1124.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowlin D. M., Bollinger J., Hazelbauer G. L. Site-directed mutations altering methyl-accepting residues of a sensory transducer protein. Proteins. 1988;3(2):102–112. doi: 10.1002/prot.340030205. [DOI] [PubMed] [Google Scholar]
- Park C., Dutton D. P., Hazelbauer G. L. Effects of glutamines and glutamates at sites of covalent modification of a methyl-accepting transducer. J Bacteriol. 1990 Dec;172(12):7179–7187. doi: 10.1128/jb.172.12.7179-7187.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkinson J. S. Signal transduction schemes of bacteria. Cell. 1993 Jun 4;73(5):857–871. doi: 10.1016/0092-8674(93)90267-t. [DOI] [PubMed] [Google Scholar]
- Schuster S. C., Swanson R. V., Alex L. A., Bourret R. B., Simon M. I. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature. 1993 Sep 23;365(6444):343–347. doi: 10.1038/365343a0. [DOI] [PubMed] [Google Scholar]
- Seeley S. K., Weis R. M., Thompson L. K. The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior. Biochemistry. 1996 Apr 23;35(16):5199–5206. doi: 10.1021/bi9524979. [DOI] [PubMed] [Google Scholar]
- Seeley S. K., Wittrock G. K., Thompson L. K., Weis R. M. Oligomers of the cytoplasmic fragment from the Escherichia coli aspartate receptor dissociate through an unfolded transition state. Biochemistry. 1996 Dec 17;35(50):16336–16345. doi: 10.1021/bi961749i. [DOI] [PubMed] [Google Scholar]
- Shapiro M. J., Chakrabarti I., Koshland D. E., Jr Contributions made by individual methylation sites of the Escherichia coli aspartate receptor to chemotactic behavior. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1053–1056. doi: 10.1073/pnas.92.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro M. J., Koshland D. E., Jr Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli. J Biol Chem. 1994 Apr 15;269(15):11054–11059. [PubMed] [Google Scholar]
- Shapiro M. J., Koshland D. E., Jr Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli. J Biol Chem. 1994 Apr 15;269(15):11054–11059. [PubMed] [Google Scholar]
- Surette M. G., Stock J. B. Role of alpha-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J Biol Chem. 1996 Jul 26;271(30):17966–17973. doi: 10.1074/jbc.271.30.17966. [DOI] [PubMed] [Google Scholar]
- Tatsuno I., Homma M., Oosawa K., Kawagishi I. Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer. Science. 1996 Oct 18;274(5286):423–425. doi: 10.1126/science.274.5286.423. [DOI] [PubMed] [Google Scholar]
- Tatsuno I., Lee L., Kawagishi I., Homma M., Imae Y. Transmembrane signalling by the chimeric chemosensory receptors of Escherichia coli Tsr and Tar with heterologous membrane-spanning regions. Mol Microbiol. 1994 Nov;14(4):755–762. doi: 10.1111/j.1365-2958.1994.tb01312.x. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Wang J. Y., Koshland D. E., Jr Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. J Biol Chem. 1986 Aug 15;261(23):10814–10820. [PubMed] [Google Scholar]
- Wolfe A. J., Berg H. C. Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6973–6977. doi: 10.1073/pnas.86.18.6973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe A. J., Conley M. P., Kramer T. J., Berg H. C. Reconstitution of signaling in bacterial chemotaxis. J Bacteriol. 1987 May;169(5):1878–1885. doi: 10.1128/jb.169.5.1878-1885.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Long D. G., Weis R. M. Reversible dissociation and unfolding of the Escherichia coli aspartate receptor cytoplasmic fragment. Biochemistry. 1995 Mar 7;34(9):3056–3065. doi: 10.1021/bi00009a037. [DOI] [PubMed] [Google Scholar]