Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(21):6649–6656. doi: 10.1128/jb.179.21.6649-6656.1997

Deletion of the N-terminal region of the AREA protein is correlated with a derepressed phenotype with respect to nitrogen metabolite repression.

H K Lamb 1, A L Dodds 1, D R Swatman 1, E Cairns 1, A R Hawkins 1
PMCID: PMC179591  PMID: 9352912

Abstract

The entire areA gene and a truncated version lacking the sequence encoding the N-terminal 389 amino acids were expressed from the qutE promoter and terminator in an Aspergillus nidulans strain with the endogenous areA gene deleted. This expression system was used to decouple the effects of transcription regulation and mRNA stability mediated by the native promoter and terminator from any posttranslational modulation of AREA activity. Both the full-length AREA protein and the truncated form were able to function in the deletion strain, conferring the ability to use alternate nitrogen sources. Transformants containing the entire areA gene had a repressible phenotype with respect to nitrogen metabolite repression, whereas those containing the truncated form of the areA gene had a derepressed phenotype. The truncated areA gene was expressed in an A. nidulans strain containing a normally regulated wild-type areA gene, and transformants displayed a quinate-inducible nitrogen metabolite derepressed phenotype. Northern blot analysis of transformed strains showed that areA-specific mRNAs of the expected sizes were being produced. The truncated AREA protein was overproduced in Escherichia coli as a fusion protein and purified to homogeneity by a single-step immobilized metal affinity chromatography, and the purified protein was shown to bind specifically to the niaD promoter. Revised sequences of the 5' region of the areA gene and the entire meaB gene are reported.

Full Text

The Full Text of this article is available as a PDF (503.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Cove D. J. Methylammonium resistance in Aspergillus nidulans. J Bacteriol. 1969 Jun;98(3):1284–1293. doi: 10.1128/jb.98.3.1284-1293.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brownlee A. G., Arst H. N., Jr Nitrate uptake in Aspergillus nidulans and involvement of the third gene of the nitrate assimilation gene cluster. J Bacteriol. 1983 Sep;155(3):1138–1146. doi: 10.1128/jb.155.3.1138-1146.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caddick M. X. Nitrogen metabolite repression. Prog Ind Microbiol. 1994;29:323–353. [PubMed] [Google Scholar]
  4. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  5. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  6. Davis M. A., Hynes M. J. Complementation of areA- regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3753–3757. doi: 10.1073/pnas.84.11.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeBusk R. M., Ogilvie S. Regulation of amino acid utilization in Neurospora crassa: effect of nmr-1 and ms-5 mutations. J Bacteriol. 1984 Nov;160(2):656–661. doi: 10.1128/jb.160.2.656-661.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunn-Coleman N. S., Garrett R. H. The role fo glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eukaryote Neurospora crassa. Mol Gen Genet. 1980;179(1):25–32. doi: 10.1007/BF00268442. [DOI] [PubMed] [Google Scholar]
  9. Dunn-Coleman N. S., Robey E. A., Tomsett A. B., Garrett R. H. Glutamate synthase levels in Neurospora crassa mutants altered with respect to nitrogen metabolism. Mol Cell Biol. 1981 Feb;1(2):158–164. doi: 10.1128/mcb.1.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fidel S., Doonan J. H., Morris N. R. Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a gamma-actin. Gene. 1988 Oct 30;70(2):283–293. doi: 10.1016/0378-1119(88)90200-4. [DOI] [PubMed] [Google Scholar]
  11. Fu Y. H., Marzluf G. A. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol. 1990 Mar;10(3):1056–1065. doi: 10.1128/mcb.10.3.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grove G., Marzluf G. A. Identification of the product of the major regulatory gene of the nitrogen control circuit of Neurospora crassa as a nuclear DNA-binding protein. J Biol Chem. 1981 Jan 10;256(1):463–470. [PubMed] [Google Scholar]
  13. Haas H., Bauer B., Redl B., Stöffler G., Marzluf G. A. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet. 1995 Jan;27(2):150–158. doi: 10.1007/BF00313429. [DOI] [PubMed] [Google Scholar]
  14. Hawkins A. R., Lamb H. K., Radford A., Moore J. D. Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes. Gene. 1994 Sep 2;146(2):145–158. doi: 10.1016/0378-1119(94)90287-9. [DOI] [PubMed] [Google Scholar]
  15. Hawkins A. R., Moore J. D., Adeokun A. M. Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from neurospora crassa. Biochem J. 1993 Dec 1;296(Pt 2):451–457. doi: 10.1042/bj2960451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kudla B., Caddick M. X., Langdon T., Martinez-Rossi N. M., Bennett C. F., Sibley S., Davies R. W., Arst H. N., Jr The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 1990 May;9(5):1355–1364. doi: 10.1002/j.1460-2075.1990.tb08250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lamb H. K., Bagshaw C. R., Hawkins A. R. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Mol Gen Genet. 1991 Jun;227(2):187–196. doi: 10.1007/BF00259670. [DOI] [PubMed] [Google Scholar]
  18. Lamb H. K., Hawkins A. R., Smith M., Harvey I. J., Brown J., Turner G., Roberts C. F. Spatial and biological characterisation of the complete quinic acid utilisation gene cluster in Aspergillus nidulans. Mol Gen Genet. 1990 Aug;223(1):17–23. doi: 10.1007/BF00315792. [DOI] [PubMed] [Google Scholar]
  19. Lamb H. K., Newton G. H., Levett L. J., Cairns E., Roberts C. F., Hawkins A. R. The QUTA activator and QUTR repressor proteins of Aspergillus nidulans interact to regulate transcription of the quinate utilization pathway genese. Microbiology. 1996 Jun;142(Pt 6):1477–1490. doi: 10.1099/13500872-142-6-1477. [DOI] [PubMed] [Google Scholar]
  20. Langdon T., Sheerins A., Ravagnani A., Gielkens M., Caddick M. X., Arst H. N., Jr Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol. 1995 Sep;17(5):877–888. doi: 10.1111/j.1365-2958.1995.mmi_17050877.x. [DOI] [PubMed] [Google Scholar]
  21. Marzluf G. A. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol. 1993;47:31–55. doi: 10.1146/annurev.mi.47.100193.000335. [DOI] [PubMed] [Google Scholar]
  22. Moore J. D., Hawkins A. R. Overproduction of, and interaction within, bifunctional domains from the amino- and carboxy-termini of the pentafunctional AROM protein of Aspergillus nidulans. Mol Gen Genet. 1993 Jul;240(1):92–102. doi: 10.1007/BF00276888. [DOI] [PubMed] [Google Scholar]
  23. Platt A., Langdon T., Arst H. N., Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J. 1996 Jun 3;15(11):2791–2801. [PMC free article] [PubMed] [Google Scholar]
  24. Polley S. D., Caddick M. X. Molecular characterisation of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans. FEBS Lett. 1996 Jun 17;388(2-3):200–205. doi: 10.1016/0014-5793(96)00541-8. [DOI] [PubMed] [Google Scholar]
  25. Punt P. J., Greaves P. A., Kuyvenhoven A., van Deutekom J. C., Kinghorn J. R., Pouwels P. H., van den Hondel C. A. A twin-reporter vector for simultaneous analysis of expression signals of divergently transcribed, contiguous genes in filamentous fungi. Gene. 1991 Jul 31;104(1):119–122. doi: 10.1016/0378-1119(91)90476-r. [DOI] [PubMed] [Google Scholar]
  26. Wiame J. M., Grenson M., Arst H. N., Jr Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88. doi: 10.1016/s0065-2911(08)60394-x. [DOI] [PubMed] [Google Scholar]
  27. Xiao X., Fu Y. H., Marzluf G. A. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry. 1995 Jul 11;34(27):8861–8868. doi: 10.1021/bi00027a038. [DOI] [PubMed] [Google Scholar]
  28. Young J. L., Marzluf G. A. Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet. 1991 Oct;29(9-10):447–459. [PubMed] [Google Scholar]
  29. van den Hombergh J. P., Moore J. D., Charles I. G., Hawkins A. R. Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. Biochem J. 1992 Jun 15;284(Pt 3):861–867. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES