Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(21):6688–6691. doi: 10.1128/jb.179.21.6688-6691.1997

Carbon starvation of Salmonella typhimurium does not cause a general increase of mutation rates.

D Hughes 1, D I Andersson 1
PMCID: PMC179596  PMID: 9352917

Abstract

Mutation rates in bacteria can vary depending on the genetic target studied and the specific growth conditions of the cells. Here, two different methods were used to determine how rates of mutation to antibiotic resistance, auxotrophy, and prototrophy were influenced by carbon starvation on agar plates. The rate of mutation to rifampin resistance was increased by starvation as measured by fluctuation tests, similar to what has been reported previously for Escherichia coli. In contrast, the rates of mutation to various types of auxotrophy were unaffected or decreased as measured by both fluctuation tests and a repeated-streaking procedure. Similarly, the rates of reversion to prototrophy of his and lac nonsense and missense mutations were unaffected by starvation. Thus, mutation rates of different genetic targets can be affected differently by starvation and we conclude that carbon starvation is not generally mutagenic in Salmonella typhimurium.

Full Text

The Full Text of this article is available as a PDF (213.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulkarim F., Hughes D. Homologous recombination between the tuf genes of Salmonella typhimurium. J Mol Biol. 1996 Jul 26;260(4):506–522. doi: 10.1006/jmbi.1996.0418. [DOI] [PubMed] [Google Scholar]
  2. Andersson D. I., Hughes D. Muller's ratchet decreases fitness of a DNA-based microbe. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):906–907. doi: 10.1073/pnas.93.2.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beletskii A., Bhagwat A. S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13919–13924. doi: 10.1073/pnas.93.24.13919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casadesus J., Roth J. R. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Mol Gen Genet. 1989 Apr;216(2-3):210–216. doi: 10.1007/BF00334358. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng G., Tsui H. C., Winkler M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996 Apr;178(8):2388–2396. doi: 10.1128/jb.178.8.2388-2396.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fink G. R., Klopotowski T., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium. IV. A positive selection for polar histidine-requiring mutants from histidine operator constitutive mutants. J Mol Biol. 1967 Nov 28;30(1):81–95. doi: 10.1016/0022-2836(67)90245-8. [DOI] [PubMed] [Google Scholar]
  8. Foster P. L. Adaptive mutation: the uses of adversity. Annu Rev Microbiol. 1993;47:467–504. doi: 10.1146/annurev.mi.47.100193.002343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galitski T., Roth J. R. A search for a general phenomenon of adaptive mutability. Genetics. 1996 Jun;143(2):645–659. doi: 10.1093/genetics/143.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gutnick D., Calvo J. M., Klopotowski T., Ames B. N. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol. 1969 Oct;100(1):215–219. doi: 10.1128/jb.100.1.215-219.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall B. G. Selection-induced mutations. Curr Opin Genet Dev. 1992 Dec;2(6):943–946. doi: 10.1016/s0959-437x(05)80120-0. [DOI] [PubMed] [Google Scholar]
  12. Hartman P. E., Hartman Z., Stahl R. C. Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet. 1971;16:1–34. doi: 10.1016/s0065-2660(08)60352-1. [DOI] [PubMed] [Google Scholar]
  13. Jin D. J., Gross C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988 Jul 5;202(1):45–58. doi: 10.1016/0022-2836(88)90517-7. [DOI] [PubMed] [Google Scholar]
  14. Lieb M. Forward and Reverse Mutation in a Histidine-Requiring Strain of Escherichia Coli. Genetics. 1951 Sep;36(5):460–477. doi: 10.1093/genetics/36.5.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu S. L., Hessel A., Sanderson K. E. The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol. 1993 Jul;175(13):4104–4120. doi: 10.1128/jb.175.13.4104-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Longerich S., Galloway A. M., Harris R. S., Wong C., Rosenberg S. M. Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12017–12020. doi: 10.1073/pnas.92.26.12017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murray M. L., Hartman P. E. Overproduction of hisH and hisF gene products leads to inhibition of cell cell division in Salmonella. Can J Microbiol. 1972 May;18(5):671–681. doi: 10.1139/m72-105. [DOI] [PubMed] [Google Scholar]
  19. Riley M. Functions of the gene products of Escherichia coli. Microbiol Rev. 1993 Dec;57(4):862–952. doi: 10.1128/mr.57.4.862-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg S. M., Harris R. S., Torkelson J. Molecular handles on adaptive mutation. Mol Microbiol. 1995 Oct;18(2):185–189. doi: 10.1111/j.1365-2958.1995.mmi_18020185.x. [DOI] [PubMed] [Google Scholar]
  21. Sanderson K. E., Hessel A., Rudd K. E. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev. 1995 Jun;59(2):241–303. doi: 10.1128/mr.59.2.241-303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  23. Selby C. P., Sancar A. Mechanisms of transcription-repair coupling and mutation frequency decline. Microbiol Rev. 1994 Sep;58(3):317–329. doi: 10.1128/mr.58.3.317-329.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taddei F., Matic I., Radman M. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11736–11740. doi: 10.1073/pnas.92.25.11736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 1997 Jun 2;16(11):3303–3311. doi: 10.1093/emboj/16.11.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tröbner W., Piechocki R. Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet. 1984;198(2):177–178. doi: 10.1007/BF00328720. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES