Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(21):6741–6748. doi: 10.1128/jb.179.21.6741-6748.1997

A triggered-suicide system designed as a defense against bacteriophages.

G M Djordjevic 1, D J O'Sullivan 1, S A Walker 1, M A Conkling 1, T R Klaenhammer 1
PMCID: PMC179604  PMID: 9352925

Abstract

A novel bacteriophage protection system for Lactococcus lactis based on a genetic trap, in which a strictly phage-inducible promoter isolated from the lytic phage phi31 is used to activate a bacterial suicide system after infection, was developed. The lethal gene of the suicide system consists of the three-gene restriction cassette LlaIR+, which is lethal across a wide range of gram-positive bacteria. The phage-inducible trigger promoter (phi31P) and the LlaIR+ restriction cassette were cloned in Escherichia coli on a high-copy-number replicon to generate pTRK414H. Restriction activity was not apparent in E. coli or L. lactis prior to phage infection. In phage challenges of L. lactis(pTRK414H) with phi31, the efficiency of plaquing was lowered to 10(-4) and accompanied by a fourfold reduction in burst size. Center-of-infection assays revealed that only 15% of infected cells released progeny phage. In addition to phage phi31, the phi31P/LlaIR+ suicide cassette also inhibited four phi31-derived recombinant phages at levels at least 10-fold greater than that of phi31. The phi31P/LlaIR+-based suicide system is a genetically engineered form of abortive infection that traps and eliminates phages potentially evolving in fermentation environments by destroying the phage genome and killing the propagation host. This type of phage-triggered suicide system could be designed for any bacterium-phage combination, given a universal lethal gene and an inducible promoter which is triggered by the infecting bacteriophage.

Full Text

The Full Text of this article is available as a PDF (975.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrenholtz I., Lorenz M. G., Wackernagel W. A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl Environ Microbiol. 1994 Oct;60(10):3746–3751. doi: 10.1128/aem.60.10.3746-3751.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alatossava T., Klaenhammer T. R. Molecular Characterization of Three Small Isometric-Headed Bacteriophages Which Vary in Their Sensitivity to the Lactococcal Phage Resistance Plasmid pTR2030. Appl Environ Microbiol. 1991 May;57(5):1346–1353. doi: 10.1128/aem.57.5.1346-1353.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bahassi E. M., Salmon M. A., Van Melderen L., Bernard P., Couturier M. F plasmid CcdB killer protein: ccdB gene mutants coding for non-cytotoxic proteins which retain their regulatory functions. Mol Microbiol. 1995 Mar;15(6):1031–1037. doi: 10.1111/j.1365-2958.1995.tb02278.x. [DOI] [PubMed] [Google Scholar]
  4. Ball T. K., Saurugger P. N., Benedik M. J. The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene. 1987;57(2-3):183–192. doi: 10.1016/0378-1119(87)90121-1. [DOI] [PubMed] [Google Scholar]
  5. Bej A. K., Perlin M. H., Atlas R. M. Model suicide vector for containment of genetically engineered microorganisms. Appl Environ Microbiol. 1988 Oct;54(10):2472–2477. doi: 10.1128/aem.54.10.2472-2477.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bojovic B., Djordjevic G., Topisirovic L. Improved vector for promoter screening in lactococci. Appl Environ Microbiol. 1991 Feb;57(2):385–388. doi: 10.1128/aem.57.2.385-388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  9. Contreras A., Molin S., Ramos J. L. Conditional-suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol. 1991 May;57(5):1504–1508. doi: 10.1128/aem.57.5.1504-1508.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davis A., Moore I. B., Parker D. S., Taniuchi H. Nuclease B. A possible precursor of nuclease A, an extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1977 Sep 25;252(18):6544–6553. [PubMed] [Google Scholar]
  11. Djordjevic G. M., Klaenhammer T. R. Positive selection, cloning vectors for gram-positive bacteria based on a restriction endonuclease cassette. Plasmid. 1996 Jan;35(1):37–45. doi: 10.1006/plas.1996.0004. [DOI] [PubMed] [Google Scholar]
  12. Djordjevic G., Bojovic B., Miladinov N., Topisirovic L. Cloning and molecular analysis of promoter-like sequences isolated from the chromosomal DNA of Lactobacillus acidophilus ATCC 4356. Can J Microbiol. 1997 Jan;43(1):61–69. doi: 10.1139/m97-009. [DOI] [PubMed] [Google Scholar]
  13. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dunn J. J., Studier F. W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  15. Durmaz E., Klaenhammer T. R. A Starter Culture Rotation Strategy Incorporating Paired Restriction/ Modification and Abortive Infection Bacteriophage Defenses in a Single Lactococcus lactis Strain. Appl Environ Microbiol. 1995 Apr;61(4):1266–1273. doi: 10.1128/aem.61.4.1266-1273.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Elliott T., Geiduschek E. P. Defining a bacteriophage T4 late promoter: absence of a "-35" region. Cell. 1984 Jan;36(1):211–219. doi: 10.1016/0092-8674(84)90091-6. [DOI] [PubMed] [Google Scholar]
  17. Gerdes K., Bech F. W., Jørgensen S. T., Løbner-Olesen A., Rasmussen P. B., Atlung T., Boe L., Karlstrom O., Molin S., von Meyenburg K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 1986 Aug;5(8):2023–2029. doi: 10.1002/j.1460-2075.1986.tb04459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gerdes K., Poulsen L. K., Thisted T., Nielsen A. K., Martinussen J., Andreasen P. H. The hok killer gene family in gram-negative bacteria. New Biol. 1990 Nov;2(11):946–956. [PubMed] [Google Scholar]
  19. Hill C., Miller L. A., Klaenhammer T. R. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol. 1991 Jul;173(14):4363–4370. doi: 10.1128/jb.173.14.4363-4370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hill C., Pierce K., Klaenhammer T. R. The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Appl Environ Microbiol. 1989 Sep;55(9):2416–2419. doi: 10.1128/aem.55.9.2416-2419.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kassavetis G. A., Zentner P. G., Geiduschek E. P. Transcription at bacteriophage T4 variant late promoters. An application of a newly devised promoter-mapping method involving RNA chain retraction. J Biol Chem. 1986 Oct 25;261(30):14256–14265. [PubMed] [Google Scholar]
  22. Kloos D. U., Strätz M., Güttler A., Steffan R. J., Timmis K. N. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J Bacteriol. 1994 Dec;176(23):7352–7361. doi: 10.1128/jb.176.23.7352-7361.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Knudsen S., Saadbye P., Hansen L. H., Collier A., Jacobsen B. L., Schlundt J., Karlström O. H. Development and testing of improved suicide functions for biological containment of bacteria. Appl Environ Microbiol. 1995 Mar;61(3):985–991. doi: 10.1128/aem.61.3.985-991.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kulakauskas S., Lubys A., Ehrlich S. D. DNA restriction-modification systems mediate plasmid maintenance. J Bacteriol. 1995 Jun;177(12):3451–3454. doi: 10.1128/jb.177.12.3451-3454.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee G., Pero J. Conserved nucleotide sequences in temporally controlled bacteriophage promoters. J Mol Biol. 1981 Oct 25;152(2):247–265. doi: 10.1016/0022-2836(81)90242-4. [DOI] [PubMed] [Google Scholar]
  26. Lubbers M. W., Waterfield N. R., Beresford T. P., Le Page R. W., Jarvis A. W. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol. 1995 Dec;61(12):4348–4356. doi: 10.1128/aem.61.12.4348-4356.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moineau S., Pandian S., Klaenhammer T. R. Evolution of a Lytic Bacteriophage via DNA Acquisition from the Lactococcus lactis Chromosome. Appl Environ Microbiol. 1994 Jun;60(6):1832–1841. doi: 10.1128/aem.60.6.1832-1841.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moineau S., Pandian S., Klaenhammer T. R. Restriction/Modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry. Appl Environ Microbiol. 1993 Jan;59(1):197–202. doi: 10.1128/aem.59.1.197-202.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Molin S., Boe L., Jensen L. B., Kristensen C. S., Givskov M., Ramos J. L., Bej A. K. Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol. 1993;47:139–166. doi: 10.1146/annurev.mi.47.100193.001035. [DOI] [PubMed] [Google Scholar]
  30. Naito T., Kusano K., Kobayashi I. Selfish behavior of restriction-modification systems. Science. 1995 Feb 10;267(5199):897–899. doi: 10.1126/science.7846533. [DOI] [PubMed] [Google Scholar]
  31. Nicholson D. W. ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol. 1996 Mar;14(3):297–301. doi: 10.1038/nbt0396-297. [DOI] [PubMed] [Google Scholar]
  32. O'Sullivan D. J., Klaenhammer T. R. C.LlaI is a bifunctional regulatory protein of the llaI restriction modification operon from Lactococcus lactis. Dev Biol Stand. 1995;85:591–595. [PubMed] [Google Scholar]
  33. O'Sullivan D. J., Klaenhammer T. R. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene. 1993 Dec 31;137(2):227–231. doi: 10.1016/0378-1119(93)90011-q. [DOI] [PubMed] [Google Scholar]
  34. O'Sullivan D. J., Walker S. A., West S. G., Klaenhammer T. R. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology (N Y) 1996 Jan;14(1):82–87. doi: 10.1038/nbt0196-82. [DOI] [PubMed] [Google Scholar]
  35. O'Sullivan D. J., Zagula K., Klaenhammer T. R. In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J Bacteriol. 1995 Jan;177(1):134–143. doi: 10.1128/jb.177.1.134-143.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. O'sullivan D. J., Hill C., Klaenhammer T. R. Effect of Increasing the Copy Number of Bacteriophage Origins of Replication, in trans, on Incoming-Phage Proliferation. Appl Environ Microbiol. 1993 Aug;59(8):2449–2456. doi: 10.1128/aem.59.8.2449-2456.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parreira R., Valyasevi R., Lerayer A. L., Ehrlich S. D., Chopin M. C. Gene organization and transcription of a late-expressed region of a Lactococcus lactis phage. J Bacteriol. 1996 Nov;178(21):6158–6165. doi: 10.1128/jb.178.21.6158-6165.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Poulsen L. K., Refn A., Molin S., Andersson P. The gef gene from Escherichia coli is regulated at the level of translation. Mol Microbiol. 1991 Jul;5(7):1639–1648. doi: 10.1111/j.1365-2958.1991.tb01911.x. [DOI] [PubMed] [Google Scholar]
  39. Raya R. R., Kleeman E. G., Luchansky J. B., Klaenhammer T. R. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol. 1989 Sep;55(9):2206–2213. doi: 10.1128/aem.55.9.2206-2213.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Recorbet G., Robert C., Givaudan A., Kudla B., Normand P., Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol. 1993 May;59(5):1361–1366. doi: 10.1128/aem.59.5.1361-1366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roberts R. C., Ström A. R., Helinski D. R. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J Mol Biol. 1994 Mar 18;237(1):35–51. doi: 10.1006/jmbi.1994.1207. [DOI] [PubMed] [Google Scholar]
  42. Schweder T., Hofmann K., Hecker M. Escherichia coli K12 relA strains as safe hosts for expression of recombinant DNA. Appl Microbiol Biotechnol. 1995 Jan;42(5):718–723. doi: 10.1007/BF00171951. [DOI] [PubMed] [Google Scholar]
  43. Sharp P. M. Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol Biol Evol. 1986 Jan;3(1):75–83. doi: 10.1093/oxfordjournals.molbev.a040377. [DOI] [PubMed] [Google Scholar]
  44. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tsuchimoto S., Ohtsubo E. Effect of the pem system on stable maintenance of plasmid R100 in various Escherichia coli hosts. Mol Gen Genet. 1989 Feb;215(3):463–468. doi: 10.1007/BF00427044. [DOI] [PubMed] [Google Scholar]
  46. Yarmolinsky M. B. Programmed cell death in bacterial populations. Science. 1995 Feb 10;267(5199):836–837. doi: 10.1126/science.7846528. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES