Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(21):6769–6777. doi: 10.1128/jb.179.21.6769-6777.1997

Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16.

R Cramm 1, R A Siddiqui 1, B Friedrich 1
PMCID: PMC179608  PMID: 9352929

Abstract

Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Igarashi Y., Kodama T. The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1995 Apr 4;1261(2):279–284. doi: 10.1016/0167-4781(95)00018-c. [DOI] [PubMed] [Google Scholar]
  2. Averill B. A., Tiedje J. M. The chemical mechanism of microbial denitrification. FEBS Lett. 1982 Feb 8;138(1):8–12. doi: 10.1016/0014-5793(82)80383-9. [DOI] [PubMed] [Google Scholar]
  3. Bartnikas T. B., Tosques I. E., Laratta W. P., Shi J., Shapleigh J. P. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1997 Jun;179(11):3534–3540. doi: 10.1128/jb.179.11.3534-3540.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
  5. Carr G. J., Page M. D., Ferguson S. J. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur J Biochem. 1989 Feb 15;179(3):683–692. doi: 10.1111/j.1432-1033.1989.tb14601.x. [DOI] [PubMed] [Google Scholar]
  6. Chen W. P., Kuo T. T. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 1993 May 11;21(9):2260–2260. doi: 10.1093/nar/21.9.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cramm R., Siddiqui R. A., Friedrich B. Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J Biol Chem. 1994 Mar 11;269(10):7349–7354. [PubMed] [Google Scholar]
  8. Dermastia M., Turk T., Hollocher T. C. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J Biol Chem. 1991 Jun 15;266(17):10899–10905. [PubMed] [Google Scholar]
  9. Ferguson S. J. Denitrification and its control. Antonie Van Leeuwenhoek. 1994;66(1-3):89–110. doi: 10.1007/BF00871634. [DOI] [PubMed] [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  11. Fujiwara T., Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J Bacteriol. 1996 Apr;178(7):1866–1871. doi: 10.1128/jb.178.7.1866-1871.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B. The superfamily of heme-copper respiratory oxidases. J Bacteriol. 1994 Sep;176(18):5587–5600. doi: 10.1128/jb.176.18.5587-5600.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Girsch P., de Vries S. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):202–216. doi: 10.1016/s0005-2728(96)00138-7. [DOI] [PubMed] [Google Scholar]
  14. Heiss B., Frunzke K., Zumft W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol. 1989 Jun;171(6):3288–3297. doi: 10.1128/jb.171.6.3288-3297.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holloway P., McCormick W., Watson R. J., Chan Y. K. Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol. 1996 Mar;178(6):1505–1514. doi: 10.1128/jb.178.6.1505-1514.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunt T. P., Magasanik B. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8453–8457. doi: 10.1073/pnas.82.24.8453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
  18. Kastrau D. H., Heiss B., Kroneck P. M., Zumft W. G. Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties. Eur J Biochem. 1994 Jun 1;222(2):293–303. doi: 10.1111/j.1432-1033.1994.tb18868.x. [DOI] [PubMed] [Google Scholar]
  19. Knauf V. C., Nester E. W. Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid. 1982 Jul;8(1):45–54. doi: 10.1016/0147-619x(82)90040-3. [DOI] [PubMed] [Google Scholar]
  20. Kortlüke C., Friedrich B. Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol. 1992 Oct;174(19):6290–6293. doi: 10.1128/jb.174.19.6290-6293.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWE R. H., EVANS H. J. PREPARATION AND SOME PROPERTIES OF A SOLUBLE NITRATE REDUCTASE FROM RHIZOBIUM JAPONICUM. Biochim Biophys Acta. 1964 Jun 1;85:377–389. doi: 10.1016/0926-6569(64)90301-3. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lenz O., Schwartz E., Dernedde J., Eitinger M., Friedrich B. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol. 1994 Jul;176(14):4385–4393. doi: 10.1128/jb.176.14.4385-4393.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakahara K., Tanimoto T., Hatano K., Usuda K., Shoun H. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem. 1993 Apr 15;268(11):8350–8355. [PubMed] [Google Scholar]
  25. Pfitzner J., Schlegel H. G. Denitrifikation bei Hydrogenomonas eutropha Stamm H 16. Arch Mikrobiol. 1973;90(3):199–211. [PubMed] [Google Scholar]
  26. Preisig O., Anthamatten D., Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309–3313. doi: 10.1073/pnas.90.8.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rees E., Siddiqui R. A., Köster F., Schneider B., Friedrich B. Structural gene (nirS) for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16. Appl Environ Microbiol. 1997 Feb;63(2):800–802. doi: 10.1128/aem.63.2.800-802.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Römermann D., Friedrich B. Denitrification by Alcaligenes eutrophus is plasmid dependent. J Bacteriol. 1985 May;162(2):852–854. doi: 10.1128/jb.162.2.852-854.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Römermann D., Warrelmann J., Bender R. A., Friedrich B. An rpoN-like gene of Alcaligenes eutrophus and Pseudomonas facilis controls expression of diverse metabolic pathways, including hydrogen oxidation. J Bacteriol. 1989 Feb;171(2):1093–1099. doi: 10.1128/jb.171.2.1093-1099.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHLEGEL H. G., KALTWASSER H., GOTTSCHALK G. [A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies]. Arch Mikrobiol. 1961;38:209–222. [PubMed] [Google Scholar]
  31. Saraste M., Castresana J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 1994 Mar 14;341(1):1–4. doi: 10.1016/0014-5793(94)80228-9. [DOI] [PubMed] [Google Scholar]
  32. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Usuda K., Toritsuka N., Matsuo Y., Kim D. H., Shoun H. Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol. 1995 Mar;61(3):883–889. doi: 10.1128/aem.61.3.883-889.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ye R. W., Averill B. A., Tiedje J. M. Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol. 1994 Apr;60(4):1053–1058. doi: 10.1128/aem.60.4.1053-1058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zumft W. G., Braun C., Cuypers H. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem. 1994 Jan 15;219(1-2):481–490. doi: 10.1111/j.1432-1033.1994.tb19962.x. [DOI] [PubMed] [Google Scholar]
  36. Zumft W. G., Dreusch A., Löchelt S., Cuypers H., Friedrich B., Schneider B. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem. 1992 Aug 15;208(1):31–40. doi: 10.1111/j.1432-1033.1992.tb17156.x. [DOI] [PubMed] [Google Scholar]
  37. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]
  38. de Boer A. P., van der Oost J., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., van Spanning R. J. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem. 1996 Dec 15;242(3):592–600. doi: 10.1111/j.1432-1033.1996.0592r.x. [DOI] [PubMed] [Google Scholar]
  39. van der Oost J., de Boer A. P., de Gier J. W., Zumft W. G., Stouthamer A. H., van Spanning R. J. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett. 1994 Aug 1;121(1):1–9. doi: 10.1111/j.1574-6968.1994.tb07067.x. [DOI] [PubMed] [Google Scholar]
  40. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]
  41. von Heijne G. Signals for protein targeting into and across membranes. Subcell Biochem. 1994;22:1–19. doi: 10.1007/978-1-4615-2401-4_1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES