Abstract
Genes encoding triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are fused and form a single transcriptional unit (tigA) in Phytophthora species, members of the order Pythiales in the phylum Oomycota. This is the first demonstration of glycolytic gene fusion in eukaryotes and the first case of a TPI-GAPDH fusion in any organism. The tigA gene from Phytophthora infestans has a typical Oomycota transcriptional start point consensus sequence and, in common with most Phytophthora genes, has no introns. Furthermore, Southern and PCR analyses suggest that the same organization exists in other closely related genera, such as Pythium, from the same order (Oomycota), as well as more distantly related genera, Saprolegnia and Achlya, in the order Saprolegniales. Evidence is provided that in P. infestans, there is at least one other discrete copy of a GAPDH-encoding gene but not of a TPI-encoding gene. Finally, a phylogenetic analysis of TPI does not place Phytophthora within the assemblage of crown eukaryotes and suggests TPI may not be particularly useful for resolving relationships among major eukaryotic groups.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldauf S. L., Palmer J. D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558–11562. doi: 10.1073/pnas.90.24.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
- Bhattacharya D., Helmchen T., Bibeau C., Melkonian M. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol Biol Evol. 1995 May;12(3):415–420. doi: 10.1093/oxfordjournals.molbev.a040216. [DOI] [PubMed] [Google Scholar]
- Bhattacharya D., Stickel S. K. Sequence analysis of duplicated actin genes in Lagenidium giganteum and Pythium irregulare (Oomycota). J Mol Evol. 1994 Jul;39(1):56–61. doi: 10.1007/BF00178249. [DOI] [PubMed] [Google Scholar]
- Brinkmann H., Martin W. Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant Mol Biol. 1996 Jan;30(1):65–75. doi: 10.1007/BF00017803. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Rijk P., Van de Peer Y., Van den Broeck I., De Wachter R. Evolution according to large ribosomal subunit RNA. J Mol Evol. 1995 Sep;41(3):366–375. doi: 10.1007/BF01215184. [DOI] [PubMed] [Google Scholar]
- Delboni L. F., Mande S. C., Rentier-Delrue F., Mainfroid V., Turley S., Vellieux F. M., Martial J. A., Hol W. G. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions. Protein Sci. 1995 Dec;4(12):2594–2604. doi: 10.1002/pro.5560041217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drouin G., Moniz de Sá M., Zuker M. The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol. 1995 Dec;41(6):841–849. doi: 10.1007/BF00173163. [DOI] [PubMed] [Google Scholar]
- Eikmanns B. J. Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol. 1992 Oct;174(19):6076–6086. doi: 10.1128/jb.174.19.6076-6086.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunderson J. H., Elwood H., Ingold A., Kindle K., Sogin M. L. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5823–5827. doi: 10.1073/pnas.84.16.5823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutiérrez S., Díez B., Montenegro E., Martín J. F. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol. 1991 Apr;173(7):2354–2365. doi: 10.1128/jb.173.7.2354-2365.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashimoto T., Nakamura Y., Kamaishi T., Adachi J., Nakamura F., Okamoto K., Hasegawa M. Phylogenetic place of kinetoplastid protozoa inferred from a protein phylogeny of elongation factor 1 alpha. Mol Biochem Parasitol. 1995 Mar;70(1-2):181–185. doi: 10.1016/0166-6851(94)00217-b. [DOI] [PubMed] [Google Scholar]
- Hinkle G., Leipe D. D., Nerad T. A., Sogin M. L. The unusually long small subunit ribosomal RNA of Phreatamoeba balamuthi. Nucleic Acids Res. 1994 Feb 11;22(3):465–469. doi: 10.1093/nar/22.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaenicke R., Schurig H., Beaucamp N., Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem. 1996;48:181–269. doi: 10.1016/s0065-3233(08)60363-0. [DOI] [PubMed] [Google Scholar]
- Keeling P. J., Doolittle W. F. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol. 1996 Dec;13(10):1297–1305. doi: 10.1093/oxfordjournals.molbev.a025576. [DOI] [PubMed] [Google Scholar]
- Kim H., Feil I. K., Verlinde C. L., Petra P. H., Hol W. G. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry. 1995 Nov 21;34(46):14975–14986. doi: 10.1021/bi00046a004. [DOI] [PubMed] [Google Scholar]
- Kohlhoff M., Dahm A., Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 1996 Apr 1;383(3):245–250. doi: 10.1016/0014-5793(96)00249-9. [DOI] [PubMed] [Google Scholar]
- Korndörfer I., Steipe B., Huber R., Tomschy A., Jaenicke R. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol. 1995 Mar 3;246(4):511–521. doi: 10.1006/jmbi.1994.0103. [DOI] [PubMed] [Google Scholar]
- Liaud M. F., Valentin C., Martin W., Bouget F. Y., Kloareg B., Cerff R. The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. J Mol Evol. 1994 Apr;38(4):319–327. doi: 10.1007/BF00163149. [DOI] [PubMed] [Google Scholar]
- MacCabe A. P., Riach M. B., Unkles S. E., Kinghorn J. R. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 1990 Jan;9(1):279–287. doi: 10.1002/j.1460-2075.1990.tb08106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin W., Brinkmann H., Savonna C., Cerff R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8692–8696. doi: 10.1073/pnas.90.18.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKnight G. L., O'Hara P. J., Parker M. L. Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns. Cell. 1986 Jul 4;46(1):143–147. doi: 10.1016/0092-8674(86)90868-8. [DOI] [PubMed] [Google Scholar]
- Moon R. P., Unkles S. E., Duncan J. M., Hawkins A. R., Kinghorn J. R. Sequence of the Phytophthora infestans glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA). Plant Mol Biol. 1992 Apr;18(6):1209–1211. doi: 10.1007/BF00047730. [DOI] [PubMed] [Google Scholar]
- Pieterse C. M., van West P., Verbakel H. M., Brassé P. W., van den Berg-Velthuis G. C., Govers F. Structure and genomic organization of the ipiB and ipiO gene clusters of Phytophthora infestans. Gene. 1994 Jan 28;138(1-2):67–77. doi: 10.1016/0378-1119(94)90784-6. [DOI] [PubMed] [Google Scholar]
- Roger A. J., Smith M. W., Doolittle R. F., Doolittle W. F. Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol. 1996 Nov-Dec;43(6):475–485. doi: 10.1111/j.1550-7408.1996.tb04507.x. [DOI] [PubMed] [Google Scholar]
- Schläpfer B. S., Zuber H. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus. Gene. 1992 Dec 1;122(1):53–62. doi: 10.1016/0378-1119(92)90031-j. [DOI] [PubMed] [Google Scholar]
- Schurig H., Beaucamp N., Ostendorp R., Jaenicke R., Adler E., Knowles J. R. Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J. 1995 Feb 1;14(3):442–451. doi: 10.1002/j.1460-2075.1995.tb07020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unkles S. E., Duncan J. M., Kinghorn J. R. Zinc fingerprinting for Phytophthora species: ZIF markers. Curr Genet. 1992 Oct;22(4):317–318. doi: 10.1007/BF00317928. [DOI] [PubMed] [Google Scholar]
- Van de Peer Y., Van der Auwera G., De Wachter R. The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA. J Mol Evol. 1996 Feb;42(2):201–210. doi: 10.1007/BF02198846. [DOI] [PubMed] [Google Scholar]
- Van der Auwera G., Chapelle S., De Wachter R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 1994 Jan 31;338(2):133–136. doi: 10.1016/0014-5793(94)80350-1. [DOI] [PubMed] [Google Scholar]
- Van der Auwera G., De Baere R., Van de Peer Y., De Rijk P., Van den Broeck I., De Wachter R. The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol. 1995 Jul;12(4):671–678. doi: 10.1093/oxfordjournals.molbev.a040245. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Noble M. E., Davenport R. C. Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate isomerase. J Mol Biol. 1992 Apr 20;224(4):1115–1126. doi: 10.1016/0022-2836(92)90473-w. [DOI] [PubMed] [Google Scholar]
- Yu J. S., Noll K. M. The hyperthermophilic bacterium Thermotoga neapolitana possesses two isozymes of the 3-phosphoglycerate kinase/triosephosphate isomerase fusion protein. FEMS Microbiol Lett. 1995 Sep 15;131(3):307–312. doi: 10.1111/j.1574-6968.1995.tb07792.x. [DOI] [PubMed] [Google Scholar]
- Zhou Y. H., Ragan M. A. Cloning and characterization of the nuclear gene and cDNAs for triosephosphate isomerase of the marine red alga Gracilaria verrucosa. Curr Genet. 1995 Sep;28(4):317–323. doi: 10.1007/BF00326429. [DOI] [PubMed] [Google Scholar]