Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(21):6843–6850. doi: 10.1128/jb.179.21.6843-6850.1997

The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains.

H D Mootz 1, M A Marahiel 1
PMCID: PMC179617  PMID: 9352938

Abstract

The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.

Full Text

The Full Text of this article is available as a PDF (829.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conti E., Franks N. P., Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 1996 Mar 15;4(3):287–298. doi: 10.1016/s0969-2126(96)00033-0. [DOI] [PubMed] [Google Scholar]
  3. Conti E., Stachelhaus T., Marahiel M. A., Brick P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 1997 Jul 16;16(14):4174–4183. doi: 10.1093/emboj/16.14.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):821–831. doi: 10.1111/j.1365-2958.1993.tb01629.x. [DOI] [PubMed] [Google Scholar]
  5. De Crécy-Lagard V., Marlière P., Saurin W. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci III. 1995 Sep;318(9):927–936. [PubMed] [Google Scholar]
  6. Dieckmann R., Lee Y. O., van Liempt H., von Döhren H., Kleinkauf H. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett. 1995 Jan 3;357(2):212–216. doi: 10.1016/0014-5793(94)01342-x. [DOI] [PubMed] [Google Scholar]
  7. Elsner A., Engert H., Saenger W., Hamoen L., Venema G., Bernhard F. Substrate specificity of hybrid modules from peptide synthetases. J Biol Chem. 1997 Feb 21;272(8):4814–4819. doi: 10.1074/jbc.272.8.4814. [DOI] [PubMed] [Google Scholar]
  8. Fujikawa K., Sakamoto Y., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. II. Amino acid substitution in tyrocidine. Biochim Biophys Acta. 1968 Dec 17;169(2):520–533. doi: 10.1016/0005-2787(68)90060-9. [DOI] [PubMed] [Google Scholar]
  9. Fürbass R., Gocht M., Zuber P., Marahiel M. A. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis with the promoters of the transition state-activated genes tycA and spoVG. Mol Gen Genet. 1991 Mar;225(3):347–354. doi: 10.1007/BF00261673. [DOI] [PubMed] [Google Scholar]
  10. Gaisser S., Hughes C. A locus coding for putative non-ribosomal peptide/polyketide synthase functions is mutated in a swarming-defective Proteus mirabilis strain. Mol Gen Genet. 1997 Jan 27;253(4):415–427. doi: 10.1007/s004380050339. [DOI] [PubMed] [Google Scholar]
  11. Galli G., Rodriguez F., Cosmina P., Pratesi C., Nogarotto R., de Ferra F., Grandi G. Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta. 1994 Mar 16;1205(1):19–28. doi: 10.1016/0167-4838(94)90087-6. [DOI] [PubMed] [Google Scholar]
  12. Gocht M., Marahiel M. A. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol. 1994 May;176(9):2654–2662. doi: 10.1128/jb.176.9.2654-2662.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haese A., Pieper R., von Ostrowski T., Zocher R. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J Mol Biol. 1994 Oct 14;243(1):116–122. doi: 10.1006/jmbi.1994.1634. [DOI] [PubMed] [Google Scholar]
  14. Haese A., Schubert M., Herrmann M., Zocher R. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol. 1993 Mar;7(6):905–914. doi: 10.1111/j.1365-2958.1993.tb01181.x. [DOI] [PubMed] [Google Scholar]
  15. Hori K., Yamamoto Y., Tokita K., Saito F., Kurotsu T., Kanda M., Okamura K., Furuyama J., Saito Y. The nucleotide sequence for a proline-activating domain of gramicidin S synthetase 2 gene from Bacillus brevis. J Biochem. 1991 Jul;110(1):111–119. doi: 10.1093/oxfordjournals.jbchem.a123528. [DOI] [PubMed] [Google Scholar]
  16. Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev. 1977 Jun;41(2):449–474. doi: 10.1128/br.41.2.449-474.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleinkauf H., Von Döhren H. A nonribosomal system of peptide biosynthesis. Eur J Biochem. 1996 Mar 1;236(2):335–351. doi: 10.1111/j.1432-1033.1996.00335.x. [DOI] [PubMed] [Google Scholar]
  18. Kleinkauf H., von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem. 1990 Aug 28;192(1):1–15. doi: 10.1111/j.1432-1033.1990.tb19188.x. [DOI] [PubMed] [Google Scholar]
  19. Krause M., Marahiel M. A., von Döhren H., Kleinkauf H. Molecular cloning of an ornithine-activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in Escherichia coli. J Bacteriol. 1985 Jun;162(3):1120–1125. doi: 10.1128/jb.162.3.1120-1125.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krätzschmar J., Krause M., Marahiel M. A. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989 Oct;171(10):5422–5429. doi: 10.1128/jb.171.10.5422-5429.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol. 1996 Nov;3(11):923–936. doi: 10.1016/s1074-5521(96)90181-7. [DOI] [PubMed] [Google Scholar]
  22. Lawen A., Traber R. Substrate specificities of cyclosporin synthetase and peptolide SDZ 214-103 synthetase. Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem. 1993 Sep 25;268(27):20452–20465. [PubMed] [Google Scholar]
  23. Lee S. G., Lipmann F. Tyrocidine synthetase system. Methods Enzymol. 1975;43:585–602. doi: 10.1016/0076-6879(75)43121-4. [DOI] [PubMed] [Google Scholar]
  24. Lee S. G., Littau V., Lipmann F. The relation between sporulation and the induction of antibiotic synthesis and of amino acid uptake in Bacillus brevis. J Cell Biol. 1975 Aug;66(2):233–242. doi: 10.1083/jcb.66.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee S. G., Roskoski R., Jr, Bauer K., Lipmann F. Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry. 1973 Jan 30;12(3):398–405. doi: 10.1021/bi00727a006. [DOI] [PubMed] [Google Scholar]
  26. Marahiel M. A., Krause M., Skarpeid H. J. Cloning of the tyrocidine synthetase 1 gene from Bacillus brevis and its expression in Escherichia coli. Mol Gen Genet. 1985;201(2):231–236. doi: 10.1007/BF00425664. [DOI] [PubMed] [Google Scholar]
  27. Mittenhuber G., Weckermann R., Marahiel M. A. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J Bacteriol. 1989 Sep;171(9):4881–4887. doi: 10.1128/jb.171.9.4881-4887.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Müller G., Klingberg H., Klingberg F. Incisor growth acceleration after lesions in the lateral pontine reticular formation of rats. Biomed Biochim Acta. 1991;50(2):219–222. [PubMed] [Google Scholar]
  29. Pieper R., Kleinkauf H., Zocher R. Enniatin synthetases from different fusaria exhibiting distinct amino acid specificities. J Antibiot (Tokyo) 1992 Aug;45(8):1273–1277. doi: 10.7164/antibiotics.45.1273. [DOI] [PubMed] [Google Scholar]
  30. Riederer B., Han M., Keller U. D-Lysergyl peptide synthetase from the ergot fungus Claviceps purpurea. J Biol Chem. 1996 Nov 1;271(44):27524–27530. doi: 10.1074/jbc.271.44.27524. [DOI] [PubMed] [Google Scholar]
  31. Ristow H., Schazschneider B., Bauer K., Kleikauf H. Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation? Biochim Biophys Acta. 1975 May 1;390(2):246–252. [PubMed] [Google Scholar]
  32. Roskoski R., Jr, Gevers W., Kleinkauf H., Lipmann F. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis (ATCC 8185). Biochemistry. 1970 Dec 8;9(25):4839–4845. doi: 10.1021/bi00827a002. [DOI] [PubMed] [Google Scholar]
  33. Ruttenberg M. A., Mach B. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry. 1966 Sep;5(9):2864–2869. doi: 10.1021/bi00873a013. [DOI] [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schazschneider B., Ristow H., Kleinkauf H. Interaction between the antibiotic tyrocidine and DNA in vitro. Nature. 1974 Jun 21;249(459):757–759. doi: 10.1038/249757a0. [DOI] [PubMed] [Google Scholar]
  36. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M. A., Kruft V., Wittmann-Liebold B. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem. 1991 Dec 5;266(34):23135–23141. [PubMed] [Google Scholar]
  37. Scott-Craig J. S., Panaccione D. G., Pocard J. A., Walton J. D. The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem. 1992 Dec 25;267(36):26044–26049. [PubMed] [Google Scholar]
  38. Smith D. J., Earl A. J., Turner G. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 1990 Sep;9(9):2743–2750. doi: 10.1002/j.1460-2075.1990.tb07461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  40. Stachelhaus T., Marahiel M. A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995 Jan 1;125(1):3–14. doi: 10.1111/j.1574-6968.1995.tb07328.x. [DOI] [PubMed] [Google Scholar]
  41. Stachelhaus T., Marahiel M. A. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem. 1995 Mar 17;270(11):6163–6169. doi: 10.1074/jbc.270.11.6163. [DOI] [PubMed] [Google Scholar]
  42. Stachelhaus T., Schneider A., Marahiel M. A. Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol. 1996 Jul 26;52(2):177–186. doi: 10.1016/0006-2952(96)00111-6. [DOI] [PubMed] [Google Scholar]
  43. Stachelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995 Jul 7;269(5220):69–72. doi: 10.1126/science.7604280. [DOI] [PubMed] [Google Scholar]
  44. Stein T., Kluge B., Vater J., Franke P., Otto A., Wittmann-Liebold B. Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine. Biochemistry. 1995 Apr 11;34(14):4633–4642. doi: 10.1021/bi00014a017. [DOI] [PubMed] [Google Scholar]
  45. Stein T., Vater J., Kruft V., Otto A., Wittmann-Liebold B., Franke P., Panico M., McDowell R., Morris H. R. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem. 1996 Jun 28;271(26):15428–15435. doi: 10.1074/jbc.271.26.15428. [DOI] [PubMed] [Google Scholar]
  46. Symons D. C., Hodgson B. Isolation and properties of Bacillus brevis mutants unable to produce tyrocidine. J Bacteriol. 1982 Aug;151(2):580–590. doi: 10.1128/jb.151.2.580-590.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tetler L. W., Davey S. N., Morris M. Analysis of Bacitracin B using fast atom bombardment and tandem mass spectrometry. Biol Mass Spectrom. 1993 Dec;22(12):712–720. doi: 10.1002/bms.1200221208. [DOI] [PubMed] [Google Scholar]
  48. Tognoni A., Franchi E., Magistrelli C., Colombo E., Cosmina P., Grandi G. A putative new peptide synthase operon in Bacillus subtilis: partial characterization. Microbiology. 1995 Mar;141(Pt 3):645–648. doi: 10.1099/13500872-141-3-645. [DOI] [PubMed] [Google Scholar]
  49. Turgay K., Krause M., Marahiel M. A. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol. 1992 Feb;6(4):529–546. doi: 10.1111/j.1365-2958.1992.tb01498.x. [DOI] [PubMed] [Google Scholar]
  50. Weber G., Schörgendorfer K., Schneider-Scherzer E., Leitner E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet. 1994 Aug;26(2):120–125. doi: 10.1007/BF00313798. [DOI] [PubMed] [Google Scholar]
  51. Weckermann R., Fürbass R., Marahiel M. A. Complete nucleotide sequence of the tycA gene coding the tyrocidine synthetase 1 from Bacillus brevis. Nucleic Acids Res. 1988 Dec 23;16(24):11841–11841. doi: 10.1093/nar/16.24.11841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES