Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):6902–6911. doi: 10.1128/jb.179.22.6902-6911.1997

Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate.

T C Tallant 1, J A Krzycki 1
PMCID: PMC179627  PMID: 9371433

Abstract

During growth on acetate, Methanosarcina barkeri expresses catabolic enzymes for other methanogenic substrates such as monomethylamine. The range of substrates used by cells grown on acetate was further explored, and it was found that cells grown on acetate also converted dimethylsulfide (DMS) and methylmercaptopropionate (MMPA) to methane. Cells or extracts of cells grown on trimethylamine or methanol did not utilize either DMS or MMPA. During growth on acetate, cultures demethylated MMPA, producing methane and mercaptopropionate. Extracts of acetate-grown cells possessed DMS- and MMPA-dependent coenzyme M (CoM) methylation activities. The activity peaks of CoM methylation with either DMS or MMPA coeluted upon gel permeation chromatography of extracts of acetate-grown cells consistent with an apparent molecular mass of 470 kDa. A 480-kDa corrinoid protein, previously demonstrated to be a CoM methylase but otherwise of unknown physiological function, was found to methylate CoM with either DMS or MMPA. MMPA was demethylated by the purified 480-kDa CoM methylase, consuming 1 mol of CoM and producing 1 mol of mercaptopropionate. DMS was demethylated by the purified protein, consuming 1 mol of CoM and producing 1 mol of methanethiol. The methylthiol:CoM methyltransferase reaction could be initiated only with the enzyme-bound corrinoid in the methylated state. CoM could demethylate, and DMS and MMPA could remethylate, the corrinoid cofactor. The monomethylamine corrinoid protein and the A isozyme of methylcobamide:CoM methyltransferase (proteins homologous to the two subunits comprising the 480-kDa CoM methylase) did not catalyze CoM methylation with methylated thiols. These results indicate that the 480-kDa corrinoid protein functions as a CoM methylase during methanogenesis from DMS or MMPA.

Full Text

The Full Text of this article is available as a PDF (553.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Burke S. A., Krzycki J. A. Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine. J Bacteriol. 1995 Aug;177(15):4410–4416. doi: 10.1128/jb.177.15.4410-4416.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke S. A., Krzycki J. A. Reconstitution of Monomethylamine:Coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem. 1997 Jun 27;272(26):16570–16577. doi: 10.1074/jbc.272.26.16570. [DOI] [PubMed] [Google Scholar]
  4. Cao X. J., Krzycki J. A. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J Bacteriol. 1991 Sep;173(17):5439–5448. doi: 10.1128/jb.173.17.5439-5448.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chambers S. T., Kunin C. M., Miller D., Hamada A. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J Bacteriol. 1987 Oct;169(10):4845–4847. doi: 10.1128/jb.169.10.4845-4847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daas P. J., Hagen W. R., Keltjens J. T., van der Drift C., Vogels G. D. Activation mechanism of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Biol Chem. 1996 Sep 13;271(37):22346–22351. doi: 10.1074/jbc.271.37.22346. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958 Apr;74(2):443–450. doi: 10.1016/0003-9861(58)90014-6. [DOI] [PubMed] [Google Scholar]
  8. Fahey R. C., Newton G. L., Dorian R., Kosower E. M. Analysis of biological thiols: quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography. Anal Biochem. 1981 Mar 1;111(2):357–365. doi: 10.1016/0003-2697(81)90573-x. [DOI] [PubMed] [Google Scholar]
  9. Ferguson D. J., Jr, Krzycki J. A., Grahame D. A. Specific roles of methylcobamide:coenzyme M methyltransferase isozymes in metabolism of methanol and methylamines in Methanosarcina barkeri. J Biol Chem. 1996 Mar 1;271(9):5189–5194. doi: 10.1074/jbc.271.9.5189. [DOI] [PubMed] [Google Scholar]
  10. Ferguson D. J., Jr, Krzycki J. A. Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri. J Bacteriol. 1997 Feb;179(3):846–852. doi: 10.1128/jb.179.3.846-852.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferry J. G. Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol. 1992;27(6):473–503. doi: 10.3109/10409239209082570. [DOI] [PubMed] [Google Scholar]
  12. Ferry J. G. Methane from acetate. J Bacteriol. 1992 Sep;174(17):5489–5495. doi: 10.1128/jb.174.17.5489-5495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grahame D. A. Different isozymes of methylcobalamin:2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J Biol Chem. 1989 Aug 5;264(22):12890–12894. [PubMed] [Google Scholar]
  14. Hoover D. M., Jarrett J. T., Sands R. H., Dunham W. R., Ludwig M. L., Matthews R. G. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor. Biochemistry. 1997 Jan 7;36(1):127–138. doi: 10.1021/bi961693s. [DOI] [PubMed] [Google Scholar]
  15. Janssen P. H. Isolation of Clostridium propionicum strain 19acry3 and further characteristics of the species. Arch Microbiol. 1991;155(6):566–571. doi: 10.1007/BF00245351. [DOI] [PubMed] [Google Scholar]
  16. Kiene R. P., Oremland R. S., Catena A., Miller L. G., Capone D. G. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol. 1986 Nov;52(5):1037–1045. doi: 10.1128/aem.52.5.1037-1045.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kiene R. P., Visscher P. T. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol. 1987 Oct;53(10):2426–2434. doi: 10.1128/aem.53.10.2426-2434.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kremer J. D., Cao X., Krzycki J. Isolation of two novel corrinoid proteins from acetate-grown Methanosarcina barkeri. J Bacteriol. 1993 Aug;175(15):4824–4833. doi: 10.1128/jb.175.15.4824-4833.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kremer J., Burchfield S., Frazier C., Krzycki J. Differential in vitro methylation and synthesis of the 480-kilodalton corrinoid protein in Methanosarcina barkeri grown on different substrates. J Bacteriol. 1994 Jan;176(1):253–255. doi: 10.1128/jb.176.1.253-255.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krzycki J. A., Mortenson L. E., Prince R. C. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J Biol Chem. 1989 May 5;264(13):7217–7221. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol. 1988 Apr;38(2):139–142. doi: 10.1099/00207713-38-2-139. [DOI] [PubMed] [Google Scholar]
  23. Newton G. L., Dorian R., Fahey R. C. Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem. 1981 Jul 1;114(2):383–387. doi: 10.1016/0003-2697(81)90498-x. [DOI] [PubMed] [Google Scholar]
  24. Ni S. S., Boone D. R. Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol. 1991 Jul;41(3):410–416. doi: 10.1099/00207713-41-3-410. [DOI] [PubMed] [Google Scholar]
  25. Ni S., Woese C. R., Aldrich H. C., Boone D. R. Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int J Syst Bacteriol. 1994 Apr;44(2):357–359. doi: 10.1099/00207713-44-2-357. [DOI] [PubMed] [Google Scholar]
  26. Oremland R. S., Kiene R. P., Mathrani I., Whiticar M. J., Boone D. R. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol. 1989 Apr;55(4):994–1002. doi: 10.1128/aem.55.4.994-1002.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paul L., Krzycki J. A. Sequence and transcript analysis of a novel Methanosarcina barkeri methyltransferase II homolog and its associated corrinoid protein homologous to methionine synthase. J Bacteriol. 1996 Nov;178(22):6599–6607. doi: 10.1128/jb.178.22.6599-6607.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sauer K., Harms U., Thauer R. K. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1. Eur J Biochem. 1997 Feb 1;243(3):670–677. doi: 10.1111/j.1432-1033.1997.t01-1-00670.x. [DOI] [PubMed] [Google Scholar]
  29. Seefeldt L. C., Ensign S. A. A continuous, spectrophotometric activity assay for nitrogenase using the reductant titanium(III) citrate. Anal Biochem. 1994 Sep;221(2):379–386. doi: 10.1006/abio.1994.1429. [DOI] [PubMed] [Google Scholar]
  30. Sowers K. R., Baron S. F., Ferry J. G. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol. 1984 May;47(5):971–978. doi: 10.1128/aem.47.5.971-978.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sowers K. R., Boone J. E., Gunsalus R. P. Disaggregation of Methanosarcina spp. and Growth as Single Cells at Elevated Osmolarity. Appl Environ Microbiol. 1993 Nov;59(11):3832–3839. doi: 10.1128/aem.59.11.3832-3839.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tallant T. C., Krzycki J. A. Coenzyme M methylase activity of the 480-kilodalton corrinoid protein from Methanosarcina barkeri. J Bacteriol. 1996 Mar;178(5):1295–1301. doi: 10.1128/jb.178.5.1295-1301.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taylor B. F., Gilchrist D. C. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol. 1991 Dec;57(12):3581–3584. doi: 10.1128/aem.57.12.3581-3584.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WAGNER C., STADTMAN E. R. Bacterial fermentation of dimethyl-beta-propiothetin. Arch Biochem Biophys. 1962 Aug;98:331–336. doi: 10.1016/0003-9861(62)90191-1. [DOI] [PubMed] [Google Scholar]
  35. Wackett L. P., Honek J. F., Begley T. P., Wallace V., Orme-Johnson W. H., Walsh C. T. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Biochemistry. 1987 Sep 22;26(19):6012–6018. doi: 10.1021/bi00393a010. [DOI] [PubMed] [Google Scholar]
  36. Yeliseev A., Gärtner P., Harms U., Linder D., Thauer R. K. Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri. Arch Microbiol. 1993;159(6):530–536. doi: 10.1007/BF00249031. [DOI] [PubMed] [Google Scholar]
  37. de Souza M. P., Yoch D. C. Comparative Physiology of Dimethyl Sulfide Production by Dimethylsulfoniopropionate Lyase in Pseudomonas doudoroffii and Alcaligenes sp. Strain M3A. Appl Environ Microbiol. 1995 Nov;61(11):3986–3991. doi: 10.1128/aem.61.11.3986-3991.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van der Maarel M., Jansen M., Hansen T. A. Methanogenic conversion of 3-s-methylmercaptopropionate to 3-mercaptopropionate. Appl Environ Microbiol. 1995 Jan;61(1):48–51. doi: 10.1128/aem.61.1.48-51.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van der Meijden P., te Brömmelstroet B. W., Poirot C. M., van der Drift C., Vogels G. D. Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Bacteriol. 1984 Nov;160(2):629–635. doi: 10.1128/jb.160.2.629-635.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES