Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):6912–6920. doi: 10.1128/jb.179.22.6912-6920.1997

Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species.

D S Blehert 1, K L Knoke 1, B G Fox 1, G H Chambliss 1
PMCID: PMC179628  PMID: 9371434

Abstract

Two species of Pseudomonas capable of utilizing nitroglycerin (NG) as a sole nitrogen source were isolated from NG-contaminated soil and identified as Pseudomonas putida II-B and P. fluorescens I-C. While 9 of 13 laboratory bacterial strains that presumably had no previous exposure to NG could degrade low concentrations of NG (0.44 mM), the natural isolates tolerated concentrations of NG that were toxic to the lab strains (1.76 mM and higher). Whole-cell studies revealed that the two natural isolates produced different mixtures of the isomers of dinitroglycerol (DNG) and mononitroglycerol (MNG). A monomeric, flavin mononucleotide-containing NG reductase was purified from each natural isolate. These enzymes catalyzed the NADPH-dependent denitration of NG, yielding nitrite. Apparent kinetic constants were determined for both reductases. The P. putida enzyme had a Km for NG of 52 +/- 4 microM, a Km for NADPH of 28 +/- 2 microM, and a Vmax of 124 +/- 6 microM x min(-1), while the P. fluorescens enzyme had a Km for NG of 110 +/- 10 microM, a Km for NADPH of 5 +/- 1 microM, and a Vmax of 110 +/- 11 microM x min(-1). Anaerobic titration experiments confirmed the stoichiometry of NADPH consumption, changes in flavin oxidation state, and multiple steps of nitrite removal from NG. The products formed during time-dependent denitration reactions were consistent with a single enzyme being responsible for the in vivo product distributions. Simulation of the product formation kinetics by numerical integration showed that the P. putida enzyme produced an approximately 2-fold molar excess of 1,2-DNG relative to 1,3-DNG. This result could be fortuitous or could possibly be consistent with a random removal of the first nitro group from either the terminal (C-1 and C-3) positions or middle (C-2) position. However, during the denitration of 1,2-DNG, a 1.3-fold selectivity for the C-1 nitro group was determined. Comparable simulations of the product distributions from the P. fluorescens enzyme showed that NG was denitrated with a 4.6-fold selectivity for the C-2 position. Furthermore, a 2.4-fold selectivity for removal of the nitro group from the C-2 position of 1,2-DNG was also determined. The MNG isomers were not effectively denitrated by either purified enzyme, which suggests a reason why NG could not be used as a sole carbon source by the isolated organisms.

Full Text

The Full Text of this article is available as a PDF (471.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams J. Pharmacology of nitroglycerin and long-acting nitrates. Am J Cardiol. 1985 Jul 10;56(2):12A–18A. doi: 10.1016/0002-9149(85)91200-7. [DOI] [PubMed] [Google Scholar]
  2. Binks P. R., French C. E., Nicklin S., Bruce N. C. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol. 1996 Apr;62(4):1214–1219. doi: 10.1128/aem.62.4.1214-1219.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogaert M. G. Clinical pharmacokinetics of nitrates. Cardiovasc Drugs Ther. 1994 Oct;8(5):693–699. doi: 10.1007/BF00877116. [DOI] [PubMed] [Google Scholar]
  4. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  5. Crouthamel W. G., Dorsch B. Specific high-performance liquid chromatographic assay for nitroglycerin in dosage forms. J Pharm Sci. 1979 Feb;68(2):237–238. doi: 10.1002/jps.2600680230. [DOI] [PubMed] [Google Scholar]
  6. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  7. Ducrocq C., Servy C., Lenfant M. Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett. 1989 Nov;53(1-2):219–222. doi: 10.1016/0378-1097(89)90394-7. [DOI] [PubMed] [Google Scholar]
  8. Ducrocq C., Servy C., Lenfant M. Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem. 1990 Jun;12(3):325–330. [PubMed] [Google Scholar]
  9. Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem. 1989 Jun 15;264(17):10023–10033. [PubMed] [Google Scholar]
  10. Fox B. G., Liu Y., Dege J. E., Lipscomb J. D. Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J Biol Chem. 1991 Jan 5;266(1):540–550. [PubMed] [Google Scholar]
  11. Fox K. M., Karplus P. A. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure. 1994 Nov 15;2(11):1089–1105. [PubMed] [Google Scholar]
  12. French C. E., Bruce N. C. Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem J. 1994 Jul 1;301(Pt 1):97–103. doi: 10.1042/bj3010097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. French C. E., Nicklin S., Bruce N. C. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol. 1996 Nov;178(22):6623–6627. doi: 10.1128/jb.178.22.6623-6627.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gassner G., Wang L., Batie C., Ballou D. P. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates. Biochemistry. 1994 Oct 11;33(40):12184–12193. doi: 10.1021/bi00206a022. [DOI] [PubMed] [Google Scholar]
  15. Gorontzy T., Drzyzga O., Kahl M. W., Bruns-Nagel D., Breitung J., von Loew E., Blotevogel K. H. Microbial degradation of explosives and related compounds. Crit Rev Microbiol. 1994;20(4):265–284. doi: 10.3109/10408419409113559. [DOI] [PubMed] [Google Scholar]
  16. Hausinger R. P., Honek J. F., Walsh C. Separation of flavins and flavin analogs by high-performance liquid chromatography. Methods Enzymol. 1986;122:199–209. doi: 10.1016/0076-6879(86)22171-0. [DOI] [PubMed] [Google Scholar]
  17. Hinkson J. W. Azotobacter free-radical flavoprotein. Preparation and properties of the apoprotein. Biochemistry. 1968 Jul;7(7):2666–2672. doi: 10.1021/bi00847a033. [DOI] [PubMed] [Google Scholar]
  18. Massey V., Palmer G. On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry. 1966 Oct;5(10):3181–3189. doi: 10.1021/bi00874a016. [DOI] [PubMed] [Google Scholar]
  19. Meng M., Sun W. Q., Geelhaar L. A., Kumar G., Patel A. R., Payne G. F., Speedie M. K., Stacy J. R. Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans. Appl Environ Microbiol. 1995 Jul;61(7):2548–2553. doi: 10.1128/aem.61.7.2548-2553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Porter D. J., Voet J. G., Bright H. J. Direct evidence for carbanions and covalent N 5 -flavin-carbanion adducts as catalytic intermediates in the oxidation of nitroethane by D-amino acid oxidase. J Biol Chem. 1973 Jun 25;248(12):4400–4416. [PubMed] [Google Scholar]
  21. Scheideler L., Ninnemann H. Nitrate reductase activity test: phenazine methosulfate-ferricyanide stop reagent replaces postassay treatment. Anal Biochem. 1986 Apr;154(1):29–33. doi: 10.1016/0003-2697(86)90491-4. [DOI] [PubMed] [Google Scholar]
  22. Servent D., Ducrocq C., Henry Y., Guissani A., Lenfant M. Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophys Acta. 1991 Jul 8;1074(2):320–325. doi: 10.1016/0304-4165(91)90170-l. [DOI] [PubMed] [Google Scholar]
  23. Servent D., Ducrocq C., Henry Y., Servy C., Lenfant M. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Appl Biochem. 1992 Jun;15(3):257–266. [PubMed] [Google Scholar]
  24. Shah M. M., Spain J. C. Elimination of nitrite from the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by ferredoxin NADP oxidoreductase from spinach. Biochem Biophys Res Commun. 1996 Mar 27;220(3):563–568. doi: 10.1006/bbrc.1996.0443. [DOI] [PubMed] [Google Scholar]
  25. Shlevin H. H. Animal pharmacology of nitroglycerin. Life Sci. 1982 Apr 12;30(15):1233–1246. doi: 10.1016/0024-3205(82)90685-3. [DOI] [PubMed] [Google Scholar]
  26. Spain J. C. Biodegradation of nitroaromatic compounds. Annu Rev Microbiol. 1995;49:523–555. doi: 10.1146/annurev.mi.49.100195.002515. [DOI] [PubMed] [Google Scholar]
  27. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stankovich M., Fox B. Redox potentials of the flavoprotein lactate oxidase. Biochemistry. 1983 Sep 13;22(19):4466–4472. doi: 10.1021/bi00288a018. [DOI] [PubMed] [Google Scholar]
  29. Torfgård K. E., Ahlner J. Mechanisms of action of nitrates. Cardiovasc Drugs Ther. 1994 Oct;8(5):701–717. doi: 10.1007/BF00877117. [DOI] [PubMed] [Google Scholar]
  30. Wendt T. M., Cornell J. H., Kaplan A. M. Microbial degradation of glycerol nitrates. Appl Environ Microbiol. 1978 Nov;36(5):693–699. doi: 10.1128/aem.36.5.693-699.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White G. F., Snape J. R. Microbial cleavage of nitrate esters: defusing the environment. J Gen Microbiol. 1993 Sep;139(9):1947–1957. doi: 10.1099/00221287-139-9-1947. [DOI] [PubMed] [Google Scholar]
  32. White G. F., Snape J. R., Nicklin S. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol. 1996 Feb;62(2):637–642. doi: 10.1128/aem.62.2.637-642.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Whittaker J. W., Orville A. M., Lipscomb J. D. Protocatechuate 3,4-dioxygenase from Brevibacterium fuscum. Methods Enzymol. 1990;188:82–88. doi: 10.1016/0076-6879(90)88016-4. [DOI] [PubMed] [Google Scholar]
  34. Zenno S., Saigo K. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol. 1994 Jun;176(12):3544–3551. doi: 10.1128/jb.176.12.3544-3551.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zenno S., Saigo K., Kanoh H., Inouye S. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol. 1994 Jun;176(12):3536–3543. doi: 10.1128/jb.176.12.3536-3543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang Y. Z., Sundaram S. T., Sharma A., Brodman B. W. Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol. 1997 May;63(5):1712–1714. doi: 10.1128/aem.63.5.1712-1714.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES