Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):6921–6928. doi: 10.1128/jb.179.22.6921-6928.1997

Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine.

K E de Rudder 1, J E Thomas-Oates 1, O Geiger 1
PMCID: PMC179629  PMID: 9371435

Abstract

Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes. In addition to this structural function, PC is thought to play a major role in lipid turnover and signalling in eukaryotic systems. In prokaryotes, only some groups of bacteria, among them the members of the family Rhizobiaceae, contain PC. To understand the role of PC in bacteria, we have studied Rhizobium meliloti 1021, which is able to form nitrogen-fixing nodules on its legume host plants and therefore has a very complex phenotype. R. meliloti was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and potential mutants defective in phospholipid N-methyltransferase were screened by using a colony autoradiography procedure. Filters carrying lysed replicas of mutagenized colonies were incubated with S-adenosyl-L-[methyl-14C]methionine. Enzymatic transfer of methyl groups to phosphatidylethanolamine (PE) leads to the formation of PC and therefore to the incorporation of radiolabel into lipid material. Screening of 24,000 colonies for reduced incorporation of radiolabel into lipids led to the identification of seven mutants which have a much-reduced specific activity of phospholipid N-methyltransferase. In vivo labelling of mutant lipids with [14C]acetate showed that the methylated PC biosynthesis intermediates phosphatidylmonomethylethanolamine and phosphatidyldimethylethanolamine are no longer detectable. This loss is combined with a corresponding increase in the potential methyl acceptor PE. These results indicate that PC biosynthesis via the methylation pathway is indeed blocked in the mutants isolated. However, mass spectrometric analysis of the lipids shows that PC was still present when the mutants had been grown on complex medium and that it was present in the mutants in wild-type amounts. In vivo labelling with [methyl-14C]methionine shows that in phospholipid N-methyltransferase-deficient mutants, the choline moiety of PC is not formed by methylation. These findings suggest the existence of a second pathway for PC biosynthesis in Rhizobium.

Full Text

The Full Text of this article is available as a PDF (716.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arondel V., Benning C., Somerville C. R. Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem. 1993 Jul 25;268(21):16002–16008. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  4. Bogdanov M., Dowhan W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem. 1995 Jan 13;270(2):732–739. doi: 10.1074/jbc.270.2.732. [DOI] [PubMed] [Google Scholar]
  5. Bogdanov M., Sun J., Kaback H. R., Dowhan W. A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem. 1996 May 17;271(20):11615–11618. doi: 10.1074/jbc.271.20.11615. [DOI] [PubMed] [Google Scholar]
  6. Breedveld M. W., Miller K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev. 1994 Jun;58(2):145–161. doi: 10.1128/mr.58.2.145-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeChavigny A., Heacock P. N., Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991 Mar 15;266(8):5323–5332. [PubMed] [Google Scholar]
  8. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  9. Dénarié J., Debellé F., Promé J. C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503–535. doi: 10.1146/annurev.bi.65.070196.002443. [DOI] [PubMed] [Google Scholar]
  10. Geiger O., Thomas-Oates J. E., Glushka J., Spaink H. P., Lugtenberg B. J. Phospholipids of Rhizobium contain nodE-determined highly unsaturated fatty acid moieties. J Biol Chem. 1994 Apr 15;269(15):11090–11097. [PubMed] [Google Scholar]
  11. Gerson T., Patel J. J., Nixon L. N. Some unusual fatty acids of Rhizobium. Lipids. 1975 Mar;10(3):134–139. doi: 10.1007/BF02534150. [DOI] [PubMed] [Google Scholar]
  12. Hayashi A., Matsubara T., Morita M., Kinoshita T., Nakamura T. Structural analysis of choline phospholipids by fast atom bombardment mass spectrometry and tandem mass spectrometry. J Biochem. 1989 Aug;106(2):264–269. doi: 10.1093/oxfordjournals.jbchem.a122842. [DOI] [PubMed] [Google Scholar]
  13. Jensen N. J., Tomer K. B., Gross M. L. FAB MS/MS for phosphatidylinositol, -glycerol, -ethanolamine and other complex phospholipids. Lipids. 1987 Jul;22(7):480–489. doi: 10.1007/BF02540363. [DOI] [PubMed] [Google Scholar]
  14. KANESHIRO T., LAW J. H. PHOSPHATIDYLCHOLINE SYNTHESIS IN AGROBACTERIUM TUMEFACIENS. I. PURIFICATION AND PROPERTIES OF A PHOSPHATIDYLETHANOLAMINE N-METHYLTRANSFERASE. J Biol Chem. 1964 Jun;239:1705–1713. [PubMed] [Google Scholar]
  15. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  16. Kodaki T., Yamashita S. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. J Biol Chem. 1987 Nov 15;262(32):15428–15435. [PubMed] [Google Scholar]
  17. Kusters R., Dowhan W., de Kruijff B. Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem. 1991 May 15;266(14):8659–8662. [PubMed] [Google Scholar]
  18. Leigh J. A., Walker G. C. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 1994 Feb;10(2):63–67. doi: 10.1016/0168-9525(94)90151-1. [DOI] [PubMed] [Google Scholar]
  19. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mileykovskaya E. I., Dowhan W. Alterations in the electron transfer chain in mutant strains of Escherichia coli lacking phosphatidylethanolamine. J Biol Chem. 1993 Nov 25;268(33):24824–24831. [PubMed] [Google Scholar]
  21. Raetz C. R., Dowhan W. Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem. 1990 Jan 25;265(3):1235–1238. [PubMed] [Google Scholar]
  22. Raetz C. R. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2274–2278. doi: 10.1073/pnas.72.6.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reuhs B. L., Williams M. N., Kim J. S., Carlson R. W., Côté F. Suppression of the Fix- phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J Bacteriol. 1995 Aug;177(15):4289–4296. doi: 10.1128/jb.177.15.4289-4296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scarborough G. A., Nyc J. F. Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J Biol Chem. 1967 Jan 25;242(2):238–242. [PubMed] [Google Scholar]
  25. Sherr S. I., Law J. H. Phosphatidylcholine synthesis in Agrobacterium tumefaciens. II. Uptake and utilization of choline. J Biol Chem. 1965 Oct;240(10):3760–3765. [PubMed] [Google Scholar]
  26. Shi W., Bogdanov M., Dowhan W., Zusman D. R. The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol. 1993 Dec;175(23):7711–7714. doi: 10.1128/jb.175.23.7711-7714.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vance D. E., Ridgway N. D. The methylation of phosphatidylethanolamine. Prog Lipid Res. 1988;27(1):61–79. doi: 10.1016/0163-7827(88)90005-7. [DOI] [PubMed] [Google Scholar]
  28. Xia W., Dowhan W. In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):783–787. doi: 10.1073/pnas.92.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES