Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):6929–6936. doi: 10.1128/jb.179.22.6929-6936.1997

Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation.

M A Fernández-Moreno 1, C Vallín 1, F Malpartida 1
PMCID: PMC179630  PMID: 9371436

Abstract

In a search for strains producing biocides with a wide spectrum of activity, a new strain was isolated. This strain was taxonomically characterized as Streptomyces rochei F20, and the chemical structure of the bioactive product extracted from its fermentation broth was determined to be a mixture of streptothricins. From a genomic library of the producer strain prepared in the heterologous host Streptomyces lividans, a 7.2-kb DNA fragment which conferred resistance to the antibiotic was isolated. DNA sequencing of 5.2 kb from the cloned fragment revealed five open reading frames (ORFs) such that ORF1, -2, -3, and -4 were transcribed in the same direction while ORF5 was convergently arranged. The deduced product of ORF1 strongly resembled those of genes involved in peptide formation by a nonribosomal mechanism; the ORF2 product strongly resembled that of mphA and mphB isolated from Escherichia coli, which determines resistance to several macrolides by a macrolide 2'-phosphotransferase activity; the ORF3 product had similarities with several hydrolases; and the ORF5 product strongly resembled streptothricin acetyltransferases from different gram-positive and gram-negative bacteria. ORF5 was shown to be responsible for acetyl coenzyme A-dependent streptothricin acetylation. No similarities in the databases for the ORF4 product were found. Unlike other peptide synthases, that for streptothricin biosynthesis was arranged as a multienzymatic system rather than a multifunctional protein. Insertional inactivation of ORF1 and ORF2 (and to a lesser degree, of ORF3) abolishes antibiotic biosynthesis, suggesting their involvement in the streptothricin biosynthetic pathway.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando T., Miyashiro S., Hirayama K., Kida T., Shibai H., Murai A., Udaka S. New streptothricin-group antibiotics, AN-201 I, II and III. II. Chemical structures. J Antibiot (Tokyo) 1987 Aug;40(8):1140–1145. doi: 10.7164/antibiotics.40.1140. [DOI] [PubMed] [Google Scholar]
  2. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chater K. F., Bruton C. J. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene. 1983 Dec;26(1):67–78. doi: 10.1016/0378-1119(83)90037-9. [DOI] [PubMed] [Google Scholar]
  5. Chater K. F., Wilde L. C. Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol. 1980 Feb;116(2):323–334. doi: 10.1099/00221287-116-2-323. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickens M. L., Ye J., Strohl W. R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J Bacteriol. 1995 Feb;177(3):536–543. doi: 10.1128/jb.177.3.536-543.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernández-Moreno M. A., Martínez E., Boto L., Hopwood D. A., Malpartida F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem. 1992 Sep 25;267(27):19278–19290. [PubMed] [Google Scholar]
  9. Gold S. E., Bakkeren G., Davies J. E., Kronstad J. W. Three selectable markers for transformation of Ustilago maydis. Gene. 1994 May 16;142(2):225–230. doi: 10.1016/0378-1119(94)90265-8. [DOI] [PubMed] [Google Scholar]
  10. Haupt I., Jonák J., Rychlík I., Thrum H. Action of streptothricin F on ribosomal functions. J Antibiot (Tokyo) 1980 Jun;33(6):636–641. doi: 10.7164/antibiotics.33.636. [DOI] [PubMed] [Google Scholar]
  11. Heaton M. P., Neuhaus F. C. Biosynthesis of D-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J Bacteriol. 1992 Jul;174(14):4707–4717. doi: 10.1128/jb.174.14.4707-4717.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heaton M. P., Neuhaus F. C. Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid. J Bacteriol. 1994 Feb;176(3):681–690. doi: 10.1128/jb.176.3.681-690.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
  14. Horinouchi S., Furuya K., Nishiyama M., Suzuki H., Beppu T. Nucleotide sequence of the streptothricin acetyltransferase gene from Streptomyces lavendulae and its expression in heterologous hosts. J Bacteriol. 1987 May;169(5):1929–1937. doi: 10.1128/jb.169.5.1929-1937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horn J. M., Harayama S., Timmis K. N. DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol Microbiol. 1991 Oct;5(10):2459–2474. doi: 10.1111/j.1365-2958.1991.tb02091.x. [DOI] [PubMed] [Google Scholar]
  16. Jacob J., Evers S., Bischoff K., Carlier C., Courvalin P. Characterization of the sat4 gene encoding a streptothricin acetyltransferase in Campylobacter coli BE/G4. FEMS Microbiol Lett. 1994 Jul 1;120(1-2):13–17. doi: 10.1111/j.1574-6968.1994.tb07000.x. [DOI] [PubMed] [Google Scholar]
  17. Janssen G. R., Bibb M. J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993 Feb 14;124(1):133–134. doi: 10.1016/0378-1119(93)90774-w. [DOI] [PubMed] [Google Scholar]
  18. Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
  19. Khokhlov A. S., Shutova K. I. Chemical structure of streptothricins. J Antibiot (Tokyo) 1972 Sep;25(9):501–508. doi: 10.7164/antibiotics.25.501. [DOI] [PubMed] [Google Scholar]
  20. Kido Y., Furuie T., Suzuki K., Sakamoto K., Yokoyama Y., Uyeda M., Kinjyo J., Yahara S., Nohara T., Shibata M. A streptothricin-like antibiotic mixture, A-269A (and A-269A'). J Antibiot (Tokyo) 1987 Dec;40(12):1698–1706. doi: 10.7164/antibiotics.40.1698. [DOI] [PubMed] [Google Scholar]
  21. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet. 1982;185(2):223–228. doi: 10.1007/BF00330791. [DOI] [PubMed] [Google Scholar]
  22. Kim B. T., Lee J. Y., Lee Y. Y., Kim O. Y., Chu J. H., Goo Y. M. N-methylstreptothricin D--a new streptothricin-group antibiotic from a Streptomyces spp. J Antibiot (Tokyo) 1994 Nov;47(11):1333–1336. doi: 10.7164/antibiotics.47.1333. [DOI] [PubMed] [Google Scholar]
  23. Kleinkauf H., Von Döhren H. A nonribosomal system of peptide biosynthesis. Eur J Biochem. 1996 Mar 1;236(2):335–351. doi: 10.1111/j.1432-1033.1996.00335.x. [DOI] [PubMed] [Google Scholar]
  24. Kobayashi T., Shimotsu H., Horinouchi S., Uozumi T., Beppu T. Isolation and characterization of a pock-forming plasmid pTA4001 from Streptomyces lavendulae. J Antibiot (Tokyo) 1984 Apr;37(4):368–375. doi: 10.7164/antibiotics.37.368. [DOI] [PubMed] [Google Scholar]
  25. Kono M., O'Hara K., Ebisu T. Purification and characterization of macrolide 2'-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):89–94. doi: 10.1016/0378-1097(92)90369-y. [DOI] [PubMed] [Google Scholar]
  26. Krügel H., Fiedler G., Smith C., Baumberg S. Sequence and transcriptional analysis of the nourseothricin acetyltransferase-encoding gene nat1 from Streptomyces noursei. Gene. 1993 May 15;127(1):127–131. doi: 10.1016/0378-1119(93)90627-f. [DOI] [PubMed] [Google Scholar]
  27. Kusumoto S., Kambayashi Y., Imaoka S., Shima K., Shiba T. Total chemical structure of streptothricin. J Antibiot (Tokyo) 1982 Jul;35(7):925–927. doi: 10.7164/antibiotics.35.925. [DOI] [PubMed] [Google Scholar]
  28. Liu J., Duncan K., Walsh C. T. Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J Bacteriol. 1989 Feb;171(2):791–798. doi: 10.1128/jb.171.2.791-798.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lydiate D. J., Malpartida F., Hopwood D. A. The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene. 1985;35(3):223–235. doi: 10.1016/0378-1119(85)90001-0. [DOI] [PubMed] [Google Scholar]
  30. Madduri K., Hutchinson C. R. Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol. 1995 Jul;177(13):3879–3884. doi: 10.1128/jb.177.13.3879-3884.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mansouri K., Piepersberg W. Genetics of streptomycin production in Streptomyces griseus: nucleotide sequence of five genes, strFGHIK, including a phosphatase gene. Mol Gen Genet. 1991 Sep;228(3):459–469. doi: 10.1007/BF00260640. [DOI] [PubMed] [Google Scholar]
  32. Muth G., Farr M., Hartmann V., Wohlleben W. Streptomyces ghanaensis plasmid pSG5: nucleotide sequence analysis of the self-transmissible minimal replicon and characterization of the replication mode. Plasmid. 1995 Mar;33(2):113–126. doi: 10.1006/plas.1995.1013. [DOI] [PubMed] [Google Scholar]
  33. Niemi J., Mäntsälä P. Nucleotide sequences and expression of genes from Streptomyces purpurascens that cause the production of new anthracyclines in Streptomyces galilaeus. J Bacteriol. 1995 May;177(10):2942–2945. doi: 10.1128/jb.177.10.2942-2945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noguchi N., Emura A., Matsuyama H., O'Hara K., Sasatsu M., Kono M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother. 1995 Oct;39(10):2359–2363. doi: 10.1128/aac.39.10.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Noguchi N., Katayama J., O'Hara K. Cloning and nucleotide sequence of the mphB gene for macrolide 2'-phosphotransferase II in Escherichia coli. FEMS Microbiol Lett. 1996 Nov 1;144(2-3):197–202. doi: 10.1111/j.1574-6968.1996.tb08530.x. [DOI] [PubMed] [Google Scholar]
  36. Nordlund I., Shingler V. Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim Biophys Acta. 1990 Jun 21;1049(2):227–230. doi: 10.1016/0167-4781(90)90046-5. [DOI] [PubMed] [Google Scholar]
  37. O'Hara K., Kanda T., Ohmiya K., Ebisu T., Kono M. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother. 1989 Aug;33(8):1354–1357. doi: 10.1128/aac.33.8.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rodicio M. R., Bruton C. J., Chater K. F. New derivatives of the Streptomyces temperate phage phi C31 useful for the cloning and functional analysis of Streptomyces DNA. Gene. 1985;34(2-3):283–292. doi: 10.1016/0378-1119(85)90137-4. [DOI] [PubMed] [Google Scholar]
  39. Rusnak F., Faraci W. S., Walsh C. T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry. 1989 Aug 22;28(17):6827–6835. doi: 10.1021/bi00443a008. [DOI] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schrag J. D., Li Y. G., Wu S., Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature. 1991 Jun 27;351(6329):761–764. doi: 10.1038/351761a0. [DOI] [PubMed] [Google Scholar]
  42. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163. doi: 10.1128/mr.57.1.138-163.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shimada Y., Nagao T., Sugihara A., Iizumi T., Yui T., Nakamura K., Fukase T., Tominaga Y. Cloning and sequence analysis of an esterase gene from Pseudomonas sp. KWI-56. Biochim Biophys Acta. 1993 Jul 18;1174(1):79–82. doi: 10.1016/0167-4781(93)90095-u. [DOI] [PubMed] [Google Scholar]
  45. Stachelhaus T., Marahiel M. A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995 Jan 1;125(1):3–14. doi: 10.1111/j.1574-6968.1995.tb07328.x. [DOI] [PubMed] [Google Scholar]
  46. Tietze E., Brevet J. Nucleotide sequence of the bacterial streptothricin resistance gene sat3. Biochim Biophys Acta. 1995 Aug 22;1263(2):176–178. doi: 10.1016/0167-4781(95)00103-n. [DOI] [PubMed] [Google Scholar]
  47. Tietze E., Brevet J., Tschäpe H. Relationships among the streptothricin resistance transposons Tn1825 and Tn1826 and the trimethoprim resistance transposon Tn7. Plasmid. 1987 Nov;18(3):246–249. doi: 10.1016/0147-619x(87)90067-9. [DOI] [PubMed] [Google Scholar]
  48. Tietze E., Tschäpe H., Golubev A. V. DNA probes for studying streptothricin resistance evolution in enteric bacteria. J Basic Microbiol. 1990;30(4):279–287. doi: 10.1002/jobm.3620300413. [DOI] [PubMed] [Google Scholar]
  49. Vara J., Perez-Gonzalez J. A., Jimenez A. Biosynthesis of puromycin by Streptomyces alboniger: characterization of puromycin N-acetyltransferase. Biochemistry. 1985 Dec 31;24(27):8074–8081. doi: 10.1021/bi00348a036. [DOI] [PubMed] [Google Scholar]
  50. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  51. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  52. Zaballos A., Salas M., Mellado R. P. A set of expression plasmids for the synthesis of fused and unfused polypeptides in Escherichia coli. Gene. 1987;58(1):67–76. doi: 10.1016/0378-1119(87)90030-8. [DOI] [PubMed] [Google Scholar]
  53. Zylstra G. J., Gibson D. T. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES