Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):7055–7062. doi: 10.1128/jb.179.22.7055-7062.1997

Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis.

E E Wyckoff 1, J A Stoebner 1, K E Reed 1, S M Payne 1
PMCID: PMC179647  PMID: 9371453

Abstract

Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.

Full Text

The Full Text of this article is available as a PDF (780.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. MINIATURE escherichia coli CELLS DEFICIENT IN DNA. Proc Natl Acad Sci U S A. 1967 Feb;57(2):321–326. doi: 10.1073/pnas.57.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Barghouthi S., Payne S. M., Arceneaux J. E., Byers B. R. Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila. J Bacteriol. 1991 Aug;173(16):5121–5128. doi: 10.1128/jb.173.16.5121-5128.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barghouthi S., Young R., Olson M. O., Arceneaux J. E., Clem L. W., Byers B. R. Amonabactin, a novel tryptophan- or phenylalanine-containing phenolate siderophore in Aeromonas hydrophila. J Bacteriol. 1989 Apr;171(4):1811–1816. doi: 10.1128/jb.171.4.1811-1816.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  6. Bryce G. F., Brot N. Studies on the enzymatic synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry. 1972 Apr 25;11(9):1708–1715. doi: 10.1021/bi00759a028. [DOI] [PubMed] [Google Scholar]
  7. Butterton J. R., Calderwood S. B. Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol. 1994 Sep;176(18):5631–5638. doi: 10.1128/jb.176.18.5631-5638.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butterton J. R., Stoebner J. A., Payne S. M., Calderwood S. B. Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae. J Bacteriol. 1992 Jun;174(11):3729–3738. doi: 10.1128/jb.174.11.3729-3738.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Calderwood S. B., Mekalanos J. J. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol. 1987 Oct;169(10):4759–4764. doi: 10.1128/jb.169.10.4759-4764.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daruwala R., Kwon O., Meganathan R., Hudspeth M. E. A new isochorismate synthase specifically involved in menaquinone (vitamin K2) biosynthesis encoded by the menF gene. FEMS Microbiol Lett. 1996 Jul 1;140(2-3):159–163. doi: 10.1016/0378-1097(96)00173-5. [DOI] [PubMed] [Google Scholar]
  11. Daskaleros P. A., Stoebner J. A., Payne S. M. Iron uptake in Plesiomonas shigelloides: cloning of the genes for the heme-iron uptake system. Infect Immun. 1991 Aug;59(8):2706–2711. doi: 10.1128/iai.59.8.2706-2711.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985 Nov;164(2):918–921. doi: 10.1128/jb.164.2.918-921.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg M. B., DiRita V. J., Calderwood S. B. Identification of an iron-regulated virulence determinant in Vibrio cholerae, using TnphoA mutagenesis. Infect Immun. 1990 Jan;58(1):55–60. doi: 10.1128/iai.58.1.55-60.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths G. L., Sigel S. P., Payne S. M., Neilands J. B. Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem. 1984 Jan 10;259(1):383–385. [PubMed] [Google Scholar]
  15. Grossman T. H., Tuckman M., Ellestad S., Osburne M. S. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes. J Bacteriol. 1993 Oct;175(19):6203–6211. doi: 10.1128/jb.175.19.6203-6211.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henderson D. P., Payne S. M. Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbiol. 1993 Feb;7(3):461–469. doi: 10.1111/j.1365-2958.1993.tb01137.x. [DOI] [PubMed] [Google Scholar]
  17. Henderson D. P., Payne S. M. Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun. 1994 Nov;62(11):5120–5125. doi: 10.1128/iai.62.11.5120-5125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klebba P. E., Rutz J. M., Liu J., Murphy C. K. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerg Biomembr. 1993 Dec;25(6):603–611. doi: 10.1007/BF00770247. [DOI] [PubMed] [Google Scholar]
  19. Lawlor K. M., Daskaleros P. A., Robinson R. E., Payne S. M. Virulence of iron transport mutants of Shigella flexneri and utilization of host iron compounds. Infect Immun. 1987 Mar;55(3):594–599. doi: 10.1128/iai.55.3.594-599.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Litwin C. M., Rayback T. W., Skinner J. Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun. 1996 Jul;64(7):2834–2838. doi: 10.1128/iai.64.7.2834-2838.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu J., Duncan K., Walsh C. T. Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J Bacteriol. 1989 Feb;171(2):791–798. doi: 10.1128/jb.171.2.791-798.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu J., Quinn N., Berchtold G. A., Walsh C. T. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Biochemistry. 1990 Feb 13;29(6):1417–1425. doi: 10.1021/bi00458a012. [DOI] [PubMed] [Google Scholar]
  23. Luke R. K., Gibson F. Location of three genes concerned with the conversion of 2,3-dihydroxybenzoate into enterochelin in Escherichia coli K-12. J Bacteriol. 1971 Aug;107(2):557–562. doi: 10.1128/jb.107.2.557-562.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McIntosh M. A., Pickett C. L., Chenault S. S., Earhart C. F. Suppression of iron uptake deficiency in Escherichia coli K-12 by loss of two major outer membrane proteins. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1106–1112. doi: 10.1016/0006-291x(78)91250-0. [DOI] [PubMed] [Google Scholar]
  25. Mills M., Payne S. M. Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7. J Bacteriol. 1995 Jun;177(11):3004–3009. doi: 10.1128/jb.177.11.3004-3009.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nahlik M. S., Brickman T. J., Ozenberger B. A., McIntosh M. A. Nucleotide sequence and transcriptional organization of the Escherichia coli enterobactin biosynthesis cistrons entB and entA. J Bacteriol. 1989 Feb;171(2):784–790. doi: 10.1128/jb.171.2.784-790.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Brien I. G., Gibson F. The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta. 1970 Aug 14;215(2):393–402. doi: 10.1016/0304-4165(70)90038-3. [DOI] [PubMed] [Google Scholar]
  28. Ozenberger B. A., Brickman T. J., McIntosh M. A. Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol. 1989 Feb;171(2):775–783. doi: 10.1128/jb.171.2.775-783.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pierce J. R., Pickett C. L., Earhart C. F. Two fep genes are required for ferrienterochelin uptake in Escherichia coli K-12. J Bacteriol. 1983 Jul;155(1):330–336. doi: 10.1128/jb.155.1.330-336.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pollack J. R., Neilands J. B. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun. 1970 Mar 12;38(5):989–992. doi: 10.1016/0006-291x(70)90819-3. [DOI] [PubMed] [Google Scholar]
  31. Postle K. TonB protein and energy transduction between membranes. J Bioenerg Biomembr. 1993 Dec;25(6):591–601. doi: 10.1007/BF00770246. [DOI] [PubMed] [Google Scholar]
  32. Rogers H. J. Iron-Binding Catechols and Virulence in Escherichia coli. Infect Immun. 1973 Mar;7(3):445–456. doi: 10.1128/iai.7.3.445-456.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rowland B. M., Grossman T. H., Osburne M. S., Taber H. W. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene. 1996 Oct 31;178(1-2):119–123. doi: 10.1016/0378-1119(96)00349-6. [DOI] [PubMed] [Google Scholar]
  34. Rusnak F., Faraci W. S., Walsh C. T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry. 1989 Aug 22;28(17):6827–6835. doi: 10.1021/bi00443a008. [DOI] [PubMed] [Google Scholar]
  35. Rusnak F., Liu J., Quinn N., Berchtold G. A., Walsh C. T. Subcloning of the enterobactin biosynthetic gene entB: expression, purification, characterization, and substrate specificity of isochorismatase. Biochemistry. 1990 Feb 13;29(6):1425–1435. doi: 10.1021/bi00458a013. [DOI] [PubMed] [Google Scholar]
  36. Sakaitani M., Rusnak F., Quinn N. R., Tu C., Frigo T. B., Berchtold G. A., Walsh C. T. Mechanistic studies on trans-2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (Ent A) in the biosynthesis of the iron chelator enterobactin. Biochemistry. 1990 Jul 24;29(29):6789–6798. doi: 10.1021/bi00481a006. [DOI] [PubMed] [Google Scholar]
  37. Schmitt M. P., Payne S. M. Genetic analysis of the enterobactin gene cluster in Shigella flexneri. J Bacteriol. 1991 Jan;173(2):816–825. doi: 10.1128/jb.173.2.816-825.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmitt M. P., Payne S. M. Genetics and regulation of enterobactin genes in Shigella flexneri. J Bacteriol. 1988 Dec;170(12):5579–5587. doi: 10.1128/jb.170.12.5579-5587.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9. [DOI] [PubMed] [Google Scholar]
  40. Serino L., Reimmann C., Baur H., Beyeler M., Visca P., Haas D. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet. 1995 Nov 15;249(2):217–228. doi: 10.1007/BF00290369. [DOI] [PubMed] [Google Scholar]
  41. Sigel S. P., Payne S. M. Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae. J Bacteriol. 1982 Apr;150(1):148–155. doi: 10.1128/jb.150.1.148-155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sigel S. P., Stoebner J. A., Payne S. M. Iron-vibriobactin transport system is not required for virulence of Vibrio cholerae. Infect Immun. 1985 Feb;47(2):360–362. doi: 10.1128/iai.47.2.360-362.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Staab J. F., Earhart C. F. EntG activity of Escherichia coli enterobactin synthetase. J Bacteriol. 1990 Nov;172(11):6403–6410. doi: 10.1128/jb.172.11.6403-6410.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Staab J. F., Elkins M. F., Earhart C. F. Nucleotide sequence of the Escherichia coli entE gene. FEMS Microbiol Lett. 1989 May;50(1-2):15–19. doi: 10.1016/0378-1097(89)90450-3. [DOI] [PubMed] [Google Scholar]
  45. Stoebner J. A., Butterton J. R., Calderwood S. B., Payne S. M. Identification of the vibriobactin receptor of Vibrio cholerae. J Bacteriol. 1992 May;174(10):3270–3274. doi: 10.1128/jb.174.10.3270-3274.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stoebner J. A., Payne S. M. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun. 1988 Nov;56(11):2891–2895. doi: 10.1128/iai.56.11.2891-2895.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tashima K. T., Carroll P. A., Rogers M. B., Calderwood S. B. Relative importance of three iron-regulated outer membrane proteins for in vivo growth of Vibrio cholerae. Infect Immun. 1996 May;64(5):1756–1761. doi: 10.1128/iai.64.5.1756-1761.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  49. Wilkins T. D., Lankford C. E. Production by Salmonella typhimurium of 2,3-dihydroxybenzoylserine, and its stimulation of growth in human serum. J Infect Dis. 1970 Feb;121(2):129–136. doi: 10.1093/infdis/121.2.129. [DOI] [PubMed] [Google Scholar]
  50. Woodrow G. C., Young I. G., Gibson F. Mu-induced polarity in the Escherichia coli K-12 ent gene cluster: evidence for a gene (entG) involved in the biosynthesis of enterochelin. J Bacteriol. 1975 Oct;124(1):1–6. doi: 10.1128/jb.124.1.1-6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  52. Young I. G., Langman L., Luke R. K., Gibson F. Biosynthesis of the iron-transport compound enterochelin: mutants of Escherichia coli unable to synthesize 2,3-dihydroxybenzoate. J Bacteriol. 1971 Apr;106(1):51–57. doi: 10.1128/jb.106.1.51-57.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES