Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):7072–7080. doi: 10.1128/jb.179.22.7072-7080.1997

Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region.

M A Ogierman 1, A Fallarino 1, T Riess 1, S G Williams 1, S R Attridge 1, P A Manning 1
PMCID: PMC179649  PMID: 9371455

Abstract

We have cloned and sequenced a region encoding a lipase operon and a putative, previously uncharacterized metalloprotease of Vibrio cholerae O1. These lie downstream of hlyA and hlyB, which encode the El Tor hemolysin and methyl-accepting chemotactic factor, respectively. Previous reports identified the hlyC gene downstream of hlyAB, encoding an 18.3-kDa protein. However, we now show that this open reading frame (ORF) encodes a 33-kDa protein, and since the amino acid sequence is highly homologous to the triacylglyceride-specific lipase of Pseudomonas spp., hlyC has been renamed lipA. LipA contains the highly conserved pentapeptide and catalytic triad amino acid regions of the catalytic sites of other lipases. The region downstream of lipA has been sequenced and has revealed ORFs lipB and prtV. The amino acid sequence of lipB is homologous to those of the accessory lipase proteins (lipase-specific foldase) required by Pseudomonas and various other bacterial species for the production of mature active lipase, and in agreement with this, we show that both lipA and lipB are required to restore a lipase-deficient lipA null mutant of V. cholerae. The intergenic stop codon for lipA overlaps the ribosome-binding site for lipB, and a stem-loop resembling a rho-independent terminator is present immediately downstream from lipB, suggesting that lipA and lipB form a lipase operon in V. cholerae. prtV lies downstream of lipAB but is transcribed in the opposite direction and is predicted to share the same putative transcriptional terminator with lipAB. The zinc-binding and catalytic domains conserved among many metalloproteases are present in PrtV, which is highly homologous to the immune inhibitor A (InA) metalloprotease of Bacillus thuringiensis. PrtV was visualized as approximately 102 kDa, which is consistent with the coding capacity of the gene. The genetic organization of this region suggests that it is possibly part of a pathogenicity island, encoding products capable of damaging host cells and/or involved in nutrient acquisition by V. cholerae. However, neither lipA nor prtV null mutants were attenuated in the infant mouse model, nor did they exhibit reduced colonization potential compared with wild type in competition experiments.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm R. A., Manning P. A. Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae O1. Mol Microbiol. 1990 Mar;4(3):413–425. doi: 10.1111/j.1365-2958.1990.tb00608.x. [DOI] [PubMed] [Google Scholar]
  2. Alm R. A., Mayrhofer G., Kotlarski I., Manning P. A. Amino-terminal domain of the El Tor haemolysin of Vibrio cholerae O1 is expressed in classical strains and is cytotoxic. Vaccine. 1991 Aug;9(8):588–594. doi: 10.1016/0264-410x(91)90247-4. [DOI] [PubMed] [Google Scholar]
  3. Alm R. A., Stroeher U. H., Manning P. A. Extracellular proteins of Vibrio cholerae: nucleotide sequence of the structural gene (hlyA) for the haemolysin of the haemolytic El Tor strain 017 and characterization of the hlyA mutation in the non-haemolytic classical strain 569B. Mol Microbiol. 1988 Jul;2(4):481–488. doi: 10.1111/j.1365-2958.1988.tb00054.x. [DOI] [PubMed] [Google Scholar]
  4. Ambulos N. P., Jr, Duvall E. J., Lovett P. S. Analysis of the regulatory sequences needed for induction of the chloramphenicol acetyltransferase gene cat-86 by chloramphenicol and amicetin. J Bacteriol. 1986 Sep;167(3):842–849. doi: 10.1128/jb.167.3.842-849.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antonian E. Recent advances in the purification, characterization and structure determination of lipases. Lipids. 1988 Dec;23(12):1101–1106. doi: 10.1007/BF02535273. [DOI] [PubMed] [Google Scholar]
  6. Attridge S. R., Manning P. A., Holmgren J., Jonson G. Relative significance of mannose-sensitive hemagglutinin and toxin-coregulated pili in colonization of infant mice by Vibrio cholerae El Tor. Infect Immun. 1996 Aug;64(8):3369–3373. doi: 10.1128/iai.64.8.3369-3373.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Attridge S. R., Rowley D. The role of the flagellum in the adherence of Vibrio cholerae. J Infect Dis. 1983 May;147(5):864–872. doi: 10.1093/infdis/147.5.864. [DOI] [PubMed] [Google Scholar]
  8. Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blum G., Ott M., Lischewski A., Ritter A., Imrich H., Tschäpe H., Hacker J. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994 Feb;62(2):606–614. doi: 10.1128/iai.62.2.606-614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  11. Camilli A., Mekalanos J. J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol. 1995 Nov;18(4):671–683. doi: 10.1111/j.1365-2958.1995.mmi_18040671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Casanova T. B., Peterson K. M. The Vibrio cholerae hlyC gene encodes a protein that is related to lipases of pseudomonas species. DNA Seq. 1995;5(3):181–184. doi: 10.3109/10425179509029360. [DOI] [PubMed] [Google Scholar]
  13. Chihara-Siomi M., Yoshikawa K., Oshima-Hirayama N., Yamamoto K., Sogabe Y., Nakatani T., Nishioka T., Oda J. Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. Arch Biochem Biophys. 1992 Aug 1;296(2):505–513. doi: 10.1016/0003-9861(92)90604-u. [DOI] [PubMed] [Google Scholar]
  14. Dalhammar G., Steiner H. Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur J Biochem. 1984 Mar 1;139(2):247–252. doi: 10.1111/j.1432-1033.1984.tb08000.x. [DOI] [PubMed] [Google Scholar]
  15. Davis R. C., Stahnke G., Wong H., Doolittle M. H., Ameis D., Will H., Schotz M. C. Hepatic lipase: site-directed mutagenesis of a serine residue important for catalytic activity. J Biol Chem. 1990 Apr 15;265(11):6291–6295. [PubMed] [Google Scholar]
  16. Derewenda Z. S., Sharp A. M. News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem Sci. 1993 Jan;18(1):20–25. doi: 10.1016/0968-0004(93)90082-x. [DOI] [PubMed] [Google Scholar]
  17. Donnenberg M. S., Kaper J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 1991 Dec;59(12):4310–4317. doi: 10.1128/iai.59.12.4310-4317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frenken L. G., Bos J. W., Visser C., Müller W., Tommassen J., Verrips C. T. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol. 1993 Aug;9(3):579–589. doi: 10.1111/j.1365-2958.1993.tb01718.x. [DOI] [PubMed] [Google Scholar]
  19. Frenken L. G., Egmond M. R., Batenburg A. M., Bos J. W., Visser C., Verrips C. T. Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues. Appl Environ Microbiol. 1992 Dec;58(12):3787–3791. doi: 10.1128/aem.58.12.3787-3791.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hall R. H., Drasar B. S. Vibrio cholerae HlyA hemolysin is processed by proteolysis. Infect Immun. 1990 Oct;58(10):3375–3379. doi: 10.1128/iai.58.10.3375-3379.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  22. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  23. Honda T., Finkelstein R. A. Purification and characterization of a hemolysin produced by Vibrio cholerae biotype El Tor: another toxic substance produced by cholera vibrios. Infect Immun. 1979 Dec;26(3):1020–1027. doi: 10.1128/iai.26.3.1020-1027.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ichinose Y., Yamamoto K., Nakasone N., Tanabe M. J., Takeda T., Miwatani T., Iwanaga M. Enterotoxicity of El Tor-like hemolysin of non-O1 Vibrio cholerae. Infect Immun. 1987 May;55(5):1090–1093. doi: 10.1128/iai.55.5.1090-1093.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jaeger K. E., Adrian F. J., Meyer H. E., Hancock R. E., Winkler U. K. Extracellular lipase from Pseudomonas aeruginosa is an amphiphilic protein. Biochim Biophys Acta. 1992 Apr 17;1120(3):315–321. doi: 10.1016/0167-4838(92)90254-b. [DOI] [PubMed] [Google Scholar]
  26. Jaeger K. E., Ransac S., Koch H. B., Ferrato F., Dijkstra B. W. Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett. 1993 Oct 11;332(1-2):143–149. doi: 10.1016/0014-5793(93)80501-k. [DOI] [PubMed] [Google Scholar]
  27. Johnson L. A., Beacham I. R., MacRae I. C., Free M. L. Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Appl Environ Microbiol. 1992 May;58(5):1776–1779. doi: 10.1128/aem.58.5.1776-1779.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989 Jan 2;242(2):211–214. doi: 10.1016/0014-5793(89)80471-5. [DOI] [PubMed] [Google Scholar]
  29. Jørgensen S., Skov K. W., Diderichsen B. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol. 1991 Jan;173(2):559–567. doi: 10.1128/jb.173.2.559-567.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kaniga K., Delor I., Cornelis G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991 Dec 20;109(1):137–141. doi: 10.1016/0378-1119(91)90599-7. [DOI] [PubMed] [Google Scholar]
  31. Kok R. G., van Thor J. J., Nugteren-Roodzant I. M., Vosman B., Hellingwerf K. J. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase. J Bacteriol. 1995 Jun;177(11):3295–3307. doi: 10.1128/jb.177.11.3295-3307.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kovach M. E., Shaffer M. D., Peterson K. M. A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology. 1996 Aug;142(Pt 8):2165–2174. doi: 10.1099/13500872-142-8-2165. [DOI] [PubMed] [Google Scholar]
  33. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
  35. Lövgren A., Zhang M., Engström A., Dalhammar G., Landén R. Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol Microbiol. 1990 Dec;4(12):2137–2146. doi: 10.1111/j.1365-2958.1990.tb00575.x. [DOI] [PubMed] [Google Scholar]
  36. Manning P. A., Brown M. H., Heuzenroeder M. W. Cloning of the structural gene (hly) for the haemolysin of Vibrio cholerae El Tor strain 017. Gene. 1984 Nov;31(1-3):225–231. doi: 10.1016/0378-1119(84)90213-0. [DOI] [PubMed] [Google Scholar]
  37. Manning P. A. Surface-associated and soluble components of Vibrio cholerae involved in bacteria-host interactions. Curr Top Microbiol Immunol. 1994;192:265–281. doi: 10.1007/978-3-642-78624-2_12. [DOI] [PubMed] [Google Scholar]
  38. Maylié M. F., Charles M., Desnuelle P. Action of organophosphates and sulfonyl halides on porcine pancreatic lipase. Biochim Biophys Acta. 1972 Jul 13;276(1):162–175. doi: 10.1016/0005-2744(72)90017-4. [DOI] [PubMed] [Google Scholar]
  39. Murphy G. J., Murphy G., Reynolds J. J. The origin of matrix metalloproteinases and their familial relationships. FEBS Lett. 1991 Sep 2;289(1):4–7. doi: 10.1016/0014-5793(91)80895-a. [DOI] [PubMed] [Google Scholar]
  40. Nagamune K., Yamamoto K., Naka A., Matsuyama J., Miwatani T., Honda T. In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrio cholerae by soluble hemagglutinin/protease of V. cholerae, trypsin, and other proteases. Infect Immun. 1996 Nov;64(11):4655–4658. doi: 10.1128/iai.64.11.4655-4658.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Oshima-Hirayama N., Yoshikawa K., Nishioka T., Oda J. Lipase from Pseudomonas aeruginosa. Production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem. 1993 Jul 15;215(2):239–246. doi: 10.1111/j.1432-1033.1993.tb18028.x. [DOI] [PubMed] [Google Scholar]
  42. Peterson K. M., Mekalanos J. J. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun. 1988 Nov;56(11):2822–2829. doi: 10.1128/iai.56.11.2822-2829.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rader A. E., Murphy J. R. Nucleotide sequences and comparison of the hemolysin determinants of Vibrio cholerae El Tor RV79(Hly+) and RV79(Hly-) and classical 569B(Hly-). Infect Immun. 1988 Jun;56(6):1414–1419. doi: 10.1128/iai.56.6.1414-1419.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sidén I., Dalhammar G., Telander B., Boman H. G., Somerville H. Virulence factors in Bacillus thuringiensis: purification and properties of a protein inhibitor of immunity in insects. J Gen Microbiol. 1979 Sep;114(1):45–52. doi: 10.1099/00221287-114-1-45. [DOI] [PubMed] [Google Scholar]
  45. Stoebner J. A., Payne S. M. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun. 1988 Nov;56(11):2891–2895. doi: 10.1128/iai.56.11.2891-2895.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swenson D. L., Bukanov N. O., Berg D. E., Welch R. A. Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect Immun. 1996 Sep;64(9):3736–3743. doi: 10.1128/iai.64.9.3736-3743.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tan Y., Miller K. J. Cloning, expression, and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52. Appl Environ Microbiol. 1992 Apr;58(4):1402–1407. doi: 10.1128/aem.58.4.1402-1407.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  50. Voss E., Attridge S. R. In vitro production of toxin-coregulated pili by Vibrio cholerae El Tor. Microb Pathog. 1993 Oct;15(4):255–268. doi: 10.1006/mpat.1993.1076. [DOI] [PubMed] [Google Scholar]
  51. Williams S. G., Attridge S. R., Manning P. A. The transcriptional activator HlyU of Vibrio cholerae: nucleotide sequence and role in virulence gene expression. Mol Microbiol. 1993 Aug;9(4):751–760. doi: 10.1111/j.1365-2958.1993.tb01735.x. [DOI] [PubMed] [Google Scholar]
  52. Williams S. G., Manning P. A. Transcription of the Vibrio cholerae haemolysin gene, hlyA, and cloning of a positive regulatory locus, hlyU. Mol Microbiol. 1991 Aug;5(8):2031–2038. doi: 10.1111/j.1365-2958.1991.tb00825.x. [DOI] [PubMed] [Google Scholar]
  53. Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  54. Wohlfarth S., Hoesche C., Strunk C., Winkler U. K. Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol. 1992 Jul;138(7):1325–1335. doi: 10.1099/00221287-138-7-1325. [DOI] [PubMed] [Google Scholar]
  55. Yamamoto K., Ichinose Y., Shinagawa H., Makino K., Nakata A., Iwanaga M., Honda T., Miwatani T. Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products. Infect Immun. 1990 Dec;58(12):4106–4116. doi: 10.1128/iai.58.12.4106-4116.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990 Nov;172(11):6568–6572. doi: 10.1128/jb.172.11.6568-6572.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES