Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Nov;179(22):7129–7134. doi: 10.1128/jb.179.22.7129-7134.1997

Regulation of expression of the ethanol dehydrogenase gene (adhE) in Escherichia coli by catabolite repressor activator protein Cra.

A Mikulskis 1, A Aristarkhov 1, E C Lin 1
PMCID: PMC179656  PMID: 9371462

Abstract

The adhE gene encodes ethanol dehydrogenase and is located at min 27.9 of the Escherichia coli chromosome. Expression of adhE is about 10-fold higher in cells grown anaerobically than in cells grown aerobically and is dependent on both transcriptional and posttranscriptional factors. In this study, a trans-regulatory element repressing adhE expression was characterized by genetic and biochemical approaches. A mutation downregulating adhE expression was mapped at min 2 of the chromosome. DNA sequence analysis revealed a missense mutation in the cra gene, formerly known as fruR. The cra gene encodes a catabolite repressor-activator protein (Cra) involved in the modulation of carbon flow in E. coli. The mutant protein (Cra*) sustained an Arg148-->His substitution causing 1.5- and 3-fold stronger repression of adhE transcription under anaerobic and aerobic conditions, respectively. By contrast, cra null mutants displayed 1.5- and 4-fold increased adhE transcription under those conditions. Disruption of the cra gene did not abolish the anaerobic activation of the adhE gene but diminished it twofold. Cra and Cra* were purified as fusion proteins tagged with an N-terminal 6xHis element. In vitro, both fusion proteins showed binding to the adhE promoter region and to the control fruB promoter region, which is a known Cra target. However, only 6xHis-tagged Cra, and not 6xHis-Cra*, was displaced from the DNA target by the effector, fructose-1-phosphate (F1P), suggesting that the mutant protein is locked in a promoter-binding conformation and is no longer responsive to F1P. We suggest that Cra helps to tighten the control of adhE transcription under aerobic conditions by its repression.

Full Text

The Full Text of this article is available as a PDF (465.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aristarkhov A., Mikulskis A., Belasco J. G., Lin E. C. Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol. 1996 Jul;178(14):4327–4332. doi: 10.1128/jb.178.14.4327-4332.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Y. M., Lin E. C. Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J Bacteriol. 1991 Dec;173(24):8009–8013. doi: 10.1128/jb.173.24.8009-8013.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y. M., Zhu Y., Lin E. C. The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning. Mol Gen Genet. 1987 Dec;210(2):331–337. doi: 10.1007/BF00325702. [DOI] [PubMed] [Google Scholar]
  4. Chin A. M., Feldheim D. A., Saier M. H., Jr Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol. 1989 May;171(5):2424–2434. doi: 10.1128/jb.171.5.2424-2434.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark D. P., Rod M. L. Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source. J Mol Evol. 1987;25(2):151–158. doi: 10.1007/BF02101757. [DOI] [PubMed] [Google Scholar]
  6. Clark D. P. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223–234. doi: 10.1016/0168-6445(89)90033-8. [DOI] [PubMed] [Google Scholar]
  7. Cortay J. C., Nègre D., Scarabel M., Ramseier T. M., Vartak N. B., Reizer J., Saier M. H., Jr, Cozzone A. J. In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J Biol Chem. 1994 May 27;269(21):14885–14891. [PubMed] [Google Scholar]
  8. Cunningham P. R., Clark D. P. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet. 1986 Dec;205(3):487–493. doi: 10.1007/BF00338087. [DOI] [PubMed] [Google Scholar]
  9. Feldheim D. A., Chin A. M., Nierva C. T., Feucht B. U., Cao Y. W., Xu Y. F., Sutrina S. L., Saier M. H., Jr Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. J Bacteriol. 1990 Sep;172(9):5459–5469. doi: 10.1128/jb.172.9.5459-5469.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodlove P. E., Cunningham P. R., Parker J., Clark D. P. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene. 1989 Dec 21;85(1):209–214. doi: 10.1016/0378-1119(89)90483-6. [DOI] [PubMed] [Google Scholar]
  11. Jahreis K., Lengeler J. W. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Mol Microbiol. 1993 Jul;9(1):195–209. doi: 10.1111/j.1365-2958.1993.tb01681.x. [DOI] [PubMed] [Google Scholar]
  12. Johnson E. A., Levine R. L., Lin E. C. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations. J Bacteriol. 1985 Oct;164(1):479–483. doi: 10.1128/jb.164.1.479-483.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kessler D., Herth W., Knappe J. Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem. 1992 Sep 5;267(25):18073–18079. [PubMed] [Google Scholar]
  14. Kessler D., Leibrecht I., Knappe J. Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett. 1991 Apr 9;281(1-2):59–63. doi: 10.1016/0014-5793(91)80358-a. [DOI] [PubMed] [Google Scholar]
  15. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  16. Leonardo M. R., Cunningham P. R., Clark D. P. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol. 1993 Feb;175(3):870–878. doi: 10.1128/jb.175.3.870-878.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Low K. B. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. doi: 10.1128/br.36.4.587-607.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lynch A. S., Lin E. C. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol. 1996 Nov;178(21):6238–6249. doi: 10.1128/jb.178.21.6238-6249.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matayoshi S., Oda H., Sarwar G. Relationship between the production of spirosomes and anaerobic glycolysis activity in Escherichia coli B. J Gen Microbiol. 1989 Mar;135(3):525–529. doi: 10.1099/00221287-135-3-525. [DOI] [PubMed] [Google Scholar]
  20. McPhedran P., Sommer B., Lin E. C. CONTROL OF ETHANOL DEHYDROGENASE LEVELS IN AEROBACTER AEROGENES. J Bacteriol. 1961 Jun;81(6):852–857. doi: 10.1128/jb.81.6.852-857.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ramseier T. M., Bledig S., Michotey V., Feghali R., Saier M. H., Jr The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol. 1995 Jun;16(6):1157–1169. doi: 10.1111/j.1365-2958.1995.tb02339.x. [DOI] [PubMed] [Google Scholar]
  22. Ramseier T. M., Nègre D., Cortay J. C., Scarabel M., Cozzone A. J., Saier M. H., Jr In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol. 1993 Nov 5;234(1):28–44. doi: 10.1006/jmbi.1993.1561. [DOI] [PubMed] [Google Scholar]
  23. Rudolph F. B., Purich D. L., Fromm H. J. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties, and kinetic studies of the enzyme. J Biol Chem. 1968 Nov 10;243(21):5539–5545. [PubMed] [Google Scholar]
  24. Saier M. H., Jr Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol Lett. 1996 May 1;138(2-3):97–103. doi: 10.1111/j.1574-6968.1996.tb08141.x. [DOI] [PubMed] [Google Scholar]
  25. Saier M. H., Jr, Ramseier T. M. The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol. 1996 Jun;178(12):3411–3417. doi: 10.1128/jb.178.12.3411-3417.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saier M. H., Jr, Simoni R. D., Roseman S. The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system. J Biol Chem. 1970 Nov 10;245(21):5870–5873. [PubMed] [Google Scholar]
  27. Schmitt B. Aldehyde dehydrogenase activity of a complex particle from E. coli. Biochimie. 1975;57(9):1001–1004. doi: 10.1016/s0300-9084(75)80355-5. [DOI] [PubMed] [Google Scholar]
  28. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  29. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES