Abstract
The Azotobacter vinelandii cytochrome c5 gene (termed cycB) was cloned and sequenced. Mutants in this c-type cytochrome as well as cytochrome c4 mutants (mutations in cycA) and double mutants in both of the c-type respiratory pathways were characterized. Spectral and heme staining experiments on membranes from the mutants were consistent with the anticipated characteristics of all the gene-directed mutants. Membranes of the individual cytochrome c4 or c5 mutants had normal respiratory rates with physiological substrates but respiration significantly lower than the wild-type rate with ascorbate-N,N,N',N',-tetramethyl-p-phenylenediamine (TMPD) as a reductant. The growth rates of the individual cytochrome c4 or c5 mutants were not markedly different from that of the wild-type strain, but the cycA cycB double-mutant strain was noticeably growth retarded at and below 7.5% O2 on both N-containing and N-free media. The double-mutant strain was unable to grow on agar plates at O2 tensions of 2.5% or less on N-free medium. As the wild-type growth was unaffected by varying the O2 tension, the results indicate that the role of the cytochrome c-dependent pathways is to provide respiration at intermediate (5 to 10%) and low (below 5%) O2 tensions. The two c-type cytochrome genes are transcriptionally up-regulated with N2 fixation; N starvation caused 2.8-fold and 7- to 10-fold increases in the promoter activities of cycA and cycB, respectively, but these activities were affected little by the O2 level supplied to the cultures.
Full Text
The Full Text of this article is available as a PDF (949.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambler R. P., Meyer T. E., Kamen M. D. Amino acid sequences of cytochromes c-551 from the halophilic purple phototrophic bacteria, Ectothiorhodospira halophila and E. halochloris. Arch Biochem Biophys. 1993 Oct;306(1):83–93. doi: 10.1006/abbi.1993.1484. [DOI] [PubMed] [Google Scholar]
- Ambler R. P. Sequence variability in bacterial cytochromes c. Biochim Biophys Acta. 1991 May 23;1058(1):42–47. doi: 10.1016/s0005-2728(05)80266-x. [DOI] [PubMed] [Google Scholar]
- Bali A., Blanco G., Hill S., Kennedy C. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol. 1992 May;58(5):1711–1718. doi: 10.1128/aem.58.5.1711-1718.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bender R. A. The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes. Mol Microbiol. 1991 Nov;5(11):2575–2580. doi: 10.1111/j.1365-2958.1991.tb01965.x. [DOI] [PubMed] [Google Scholar]
- Bennett L. T., Jacobson M. R., Dean D. R. Isolation, sequencing, and mutagenesis of the nifF gene encoding flavodoxin from Azotobacter vinelandii. J Biol Chem. 1988 Jan 25;263(3):1364–1369. [PubMed] [Google Scholar]
- Bishop P. E., Jarlenski D. M., Hetherington D. R. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7342–7346. doi: 10.1073/pnas.77.12.7342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burris R. H. Nitrogenases. J Biol Chem. 1991 May 25;266(15):9339–9342. [PubMed] [Google Scholar]
- Calhoun M. W., Thomas J. W., Gennis R. B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. doi: 10.1016/0968-0004(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Campbell W. H., Orme-Johnson W. H., Burris R. H. A comparison of the physical and chemical properties of four cytochromes c from Azotobacter vinelandii. Biochem J. 1973 Dec;135(4):617–630. doi: 10.1042/bj1350617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter D. C., Melis K. A., O'Donnell S. E., Burgess B. K., Furey W. R., Jr, Wang B. C., Stout C. D. Crystal structure of Azotobacter cytochrome c5 at 2.5 A resolution. J Mol Biol. 1985 Jul 20;184(2):279–295. doi: 10.1016/0022-2836(85)90380-8. [DOI] [PubMed] [Google Scholar]
- Francis R. T., Jr, Becker R. R. Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem. 1984 Feb;136(2):509–514. doi: 10.1016/0003-2697(84)90253-7. [DOI] [PubMed] [Google Scholar]
- Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter D. J., Brown K. R., Pettigrew G. W. The role of cytochrome c4 in bacterial respiration. Cellular location and selective removal from membranes. Biochem J. 1989 Aug 15;262(1):233–240. doi: 10.1042/bj2620233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly M. J., Poole R. K., Yates M. G., Kennedy C. Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol. 1990 Oct;172(10):6010–6019. doi: 10.1128/jb.172.10.6010-6019.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H., Yu C., Maier R. J. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J Bacteriol. 1991 Jul;173(13):3993–3999. doi: 10.1128/jb.173.13.3993-3999.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kokotek W., Lotz W. Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene. 1989 Dec 14;84(2):467–471. doi: 10.1016/0378-1119(89)90522-2. [DOI] [PubMed] [Google Scholar]
- Kolonay J. F., Jr, Maier R. J. Formation of pH and potential gradients by the reconstituted Azotobacter vinelandii cytochrome bd respiratory protection oxidase. J Bacteriol. 1997 Jun;179(11):3813–3817. doi: 10.1128/jb.179.11.3813-3817.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolonay J. F., Jr, Moshiri F., Gennis R. B., Kaysser T. M., Maier R. J. Purification and characterization of the cytochrome bd complex from Azotobacter vinelandii: comparison to the complex from Escherichia coli. J Bacteriol. 1994 Jul;176(13):4177–4181. doi: 10.1128/jb.176.13.4177-4181.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCombie W. R., Heiner C., Kelley J. M., Fitzgerald M. G., Gocayne J. D. Rapid and reliable fluorescent cycle sequencing of double-stranded templates. DNA Seq. 1992;2(5):289–296. doi: 10.3109/10425179209030961. [DOI] [PubMed] [Google Scholar]
- Moshiri F., Kim J. W., Fu C., Maier R. J. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol. 1994 Oct;14(1):101–114. doi: 10.1111/j.1365-2958.1994.tb01270.x. [DOI] [PubMed] [Google Scholar]
- Moshiri F., Smith E. G., Taormino J. P., Maier R. J. Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidence that up-regulation during N2 fixation is independent of nifA but dependent on ntrA. J Biol Chem. 1991 Dec 5;266(34):23169–23174. [PubMed] [Google Scholar]
- NEWTON J. W., WILSON P. W., BURRIS R. H. Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J Biol Chem. 1953 Sep;204(1):445–451. [PubMed] [Google Scholar]
- Ng T. C., Laheri A. N., Maier R. J. Cloning, sequencing, and mutagenesis of the cytochrome c4 gene from Azotobacter vinelandii: characterization of the mutant strain and a proposed new branch in the respiratory chain. Biochim Biophys Acta. 1995 Jun 30;1230(3):119–129. doi: 10.1016/0005-2728(95)00043-i. [DOI] [PubMed] [Google Scholar]
- Pettigrew G. W., Brown K. R. Free and membrane-bound forms of bacterial cytochrome c4. Biochem J. 1988 Jun 1;252(2):427–435. doi: 10.1042/bj2520427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
- Robson R. L., Chesshyre J. A., Wheeler C., Jones R., Woodley P. R., Postgate J. R. Genome size and complexity in Azotobacter chroococcum. J Gen Microbiol. 1984 Jul;130(7):1603–1612. doi: 10.1099/00221287-130-7-1603. [DOI] [PubMed] [Google Scholar]
- Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Connell C. R., Heiner C., Kent S. B., Hood L. E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986 Jun 12;321(6071):674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
- Thöny-Meyer L., Beck C., Preisig O., Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol. 1994 Nov;14(4):705–716. doi: 10.1111/j.1365-2958.1994.tb01308.x. [DOI] [PubMed] [Google Scholar]
- Van Beeumen J., Ambler R. P., Meyer T. E., Kamen M. O., Olson J. M., Shaw E. K. The amino acid sequences of the cytochromes c-555 from two green sulphur bacteria of the genus Chlorobium. Biochem J. 1976 Dec 1;159(3):757–769. doi: 10.1042/bj1590757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong T. Y., Maier R. J. H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii. J Bacteriol. 1985 Aug;163(2):528–533. doi: 10.1128/jb.163.2.528-533.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong T. Y., Maier R. J. Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii. J Bacteriol. 1984 Jul;159(1):348–352. doi: 10.1128/jb.159.1.348-352.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]