Abstract
Acetobacterium woodii, Acetohalobium arabaticum, Clostridium formicoaceticum, and Sporomusa silvacetica were found to contain carbonic anhydrase (CA). Minimal to no CA activity was detected in Moorella thermoautotrophica, Moorella thermoacetica subsp. "pratumsolum," Sporomusa termitida, and Thermoanaerobacter kivui. Of the acetogens tested, A. woodii had the highest CA specific activity, approximately 14 U mg of protein(-1), in extracts of either glucose- or H2-CO2-cultivated cells. CA of A. woodii was cytoplasmic and was purified approximately 300-fold to a specific activity of 5,236 U mg of protein(-1). Intracellular acetate concentrations inhibited CA activity of A. woodii by 50 to 85%, indicating that intracellular acetate may affect in situ CA activity.
Full Text
The Full Text of this article is available as a PDF (232.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alber B. E., Ferry J. G. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6909–6913. doi: 10.1073/pnas.91.15.6909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alber B. E., Ferry J. G. Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila. J Bacteriol. 1996 Jun;178(11):3270–3274. doi: 10.1128/jb.178.11.3270-3274.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreesen J. R., Gottschalk G., Schlegel H. G. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol. 1970;72(2):154–174. doi: 10.1007/BF00409521. [DOI] [PubMed] [Google Scholar]
- Armstrong J. M., Myers D. V., Verpoorte J. A., Edsall J. T. Purification and properties of human erythrocyte carbonic anhydrases. J Biol Chem. 1966 Nov 10;241(21):5137–5149. [PubMed] [Google Scholar]
- Boriack-Sjodin P. A., Heck R. W., Laipis P. J., Silverman D. N., Christianson D. W. Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10949–10953. doi: 10.1073/pnas.92.24.10949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bracey M. H., Christiansen J., Tovar P., Cramer S. P., Bartlett S. G. Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry. 1994 Nov 8;33(44):13126–13131. doi: 10.1021/bi00248a023. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994 Oct;44(4):812–826. doi: 10.1099/00207713-44-4-812. [DOI] [PubMed] [Google Scholar]
- Daniel S. L., Hsu T., Dean S. I., Drake H. L. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol. 1990 Aug;172(8):4464–4471. doi: 10.1128/jb.172.8.4464-4471.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies R. E. Hydrochloric acid production by isolated gastric mucosa: With an appendix by R. E. Davies and F. J. W. Roughton. Biochem J. 1948;42(4):609–621. [PMC free article] [PubMed] [Google Scholar]
- Drake H. L., Daniel S. L., Küsel K., Matthies C., Kuhner C., Braus-Stromeyer S. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? Biofactors. 1997;6(1):13–24. doi: 10.1002/biof.5520060103. [DOI] [PubMed] [Google Scholar]
- Fukuzawa H., Suzuki E., Komukai Y., Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4437–4441. doi: 10.1073/pnas.89.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Liedtke C. M. Proton and bicarbonate transport mechanisms in the intestine. Annu Rev Physiol. 1987;49:51–67. doi: 10.1146/annurev.ph.49.030187.000411. [DOI] [PubMed] [Google Scholar]
- Håkansson K., Carlsson M., Svensson L. A., Liljas A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992 Oct 20;227(4):1192–1204. doi: 10.1016/0022-2836(92)90531-n. [DOI] [PubMed] [Google Scholar]
- Jennissen H. P., Heilmeyer L. M., Jr General aspects of hydrophobic chromatography. Adsorption and elution characteristics of some skeletal muscle enzymes. Biochemistry. 1975 Feb 25;14(4):754–760. doi: 10.1021/bi00675a017. [DOI] [PubMed] [Google Scholar]
- Jennissen H. P. Multivalent interaction chromatography as exemplified by the adsorption and desorption of skeletal muscle enzymes on hydrophobic alkyl-agaroses. J Chromatogr. 1978 Feb 21;159(1):71–83. doi: 10.1016/s0021-9673(00)98547-9. [DOI] [PubMed] [Google Scholar]
- Kerby R., Niemczura W., Zeikus J. G. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement. J Bacteriol. 1983 Sep;155(3):1208–1218. doi: 10.1128/jb.155.3.1208-1218.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kisker C., Schindelin H., Alber B. E., Ferry J. G., Rees D. C. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 1996 May 15;15(10):2323–2330. [PMC free article] [PubMed] [Google Scholar]
- Kuhner C. H., Frank C., Griesshammer A., Schmittroth M., Acker G., Gössner A., Drake H. L. Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol. 1997 Apr;47(2):352–358. doi: 10.1099/00207713-47-2-352. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liljas A., Håkansson K., Jonsson B. H., Xue Y. Inhibition and catalysis of carbonic anhydrase. Recent crystallographic analyses. Eur J Biochem. 1994 Jan 15;219(1-2):1–10. doi: 10.1007/978-3-642-79502-2_1. [DOI] [PubMed] [Google Scholar]
- Maren T. H., Sanyal G. The activity of sulfonamides and anions against the carbonic anhydrases of animals, plants, and bacteria. Annu Rev Pharmacol Toxicol. 1983;23:439–459. doi: 10.1146/annurev.pa.23.040183.002255. [DOI] [PubMed] [Google Scholar]
- Miyamoto H., Miyashita T., Okushima M., Nakano S., Morita T., Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9657–9660. doi: 10.1073/pnas.93.18.9657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowlett R. S., Chance M. R., Wirt M. D., Sidelinger D. E., Royal J. R., Woodroffe M., Wang Y. F., Saha R. P., Lam M. G. Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry. 1994 Nov 29;33(47):13967–13976. doi: 10.1021/bi00251a003. [DOI] [PubMed] [Google Scholar]
- Savage M. D., Wu Z. G., Daniel S. L., Lundie L. L., Jr, Drake H. L. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol. 1987 Aug;53(8):1902–1906. doi: 10.1128/aem.53.8.1902-1906.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugrue M. F. The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor. J Ocul Pharmacol Ther. 1996 Fall;12(3):363–376. doi: 10.1089/jop.1996.12.363. [DOI] [PubMed] [Google Scholar]
- Tkachenko A. G., Chudinov A. A., Salakhetdinova O. Ia. Raspredelenie poliaminov u Escherichia coli i ikh rol' v obmene kaliia mezhdu kletkoi i sredoi v protsesse aérobno-anaérobnykh perekhodov. Mikrobiologiia. 1996 Jan-Feb;65(1):10–14. [PubMed] [Google Scholar]
- Wagenaar M., Teppema L., Berkenbosch A., Olievier C., Folgering H. The effect of low-dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat. J Physiol. 1996 Aug 15;495(Pt 1):227–237. doi: 10.1113/jphysiol.1996.sp021587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willems A., Collins M. D. Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov. Int J Syst Bacteriol. 1996 Oct;46(4):1083–1087. doi: 10.1099/00207713-46-4-1083. [DOI] [PubMed] [Google Scholar]
- Yang H. C., Drake H. L. Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol. 1990 Jan;56(1):81–86. doi: 10.1128/aem.56.1.81-86.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]