Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7243–7250. doi: 10.1128/jb.179.23.7243-7250.1997

Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.

C Larsson 1, A Nilsson 1, A Blomberg 1, L Gustafsson 1
PMCID: PMC179672  PMID: 9393686

Abstract

Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.

Full Text

The Full Text of this article is available as a PDF (189.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers E., Larsson C., Lidén G., Niklasson C., Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol. 1996 Sep;62(9):3187–3195. doi: 10.1128/aem.62.9.3187-3195.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beauvoit B., Rigoulet M., Bunoust O., Raffard G., Canioni P., Guérin B. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Eur J Biochem. 1993 May 15;214(1):163–172. doi: 10.1111/j.1432-1033.1993.tb17909.x. [DOI] [PubMed] [Google Scholar]
  3. Blázquez M. A., Lagunas R., Gancedo C., Gancedo J. M. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 1993 Aug 23;329(1-2):51–54. doi: 10.1016/0014-5793(93)80191-v. [DOI] [PubMed] [Google Scholar]
  4. Campbell-Burk S. L., Shulman R. G. High-resolution NMR studies of Saccharomyces cerevisiae. Annu Rev Microbiol. 1987;41:595–616. doi: 10.1146/annurev.mi.41.100187.003115. [DOI] [PubMed] [Google Scholar]
  5. Caubet R., Guerin B., Guerin M. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae. Arch Microbiol. 1988;149(4):324–329. doi: 10.1007/BF00411650. [DOI] [PubMed] [Google Scholar]
  6. Fitton V., Rigoulet M., Ouhabi R., Guérin B. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Biochemistry. 1994 Aug 16;33(32):9692–9698. doi: 10.1021/bi00198a039. [DOI] [PubMed] [Google Scholar]
  7. Garrels J. I. The QUEST system for quantitative analysis of two-dimensional gels. J Biol Chem. 1989 Mar 25;264(9):5269–5282. [PubMed] [Google Scholar]
  8. Hueting S., Tempest D. W. Influence of the glucose input concentration on the kinetics of metabolic production by Klebsiella aerogenes NCTC 418: growing in chemostat culture in potassium- or ammonia-limited environments. Arch Microbiol. 1979 Nov;123(2):189–194. doi: 10.1007/BF00446819. [DOI] [PubMed] [Google Scholar]
  9. Kopetzki E., Entian K. D. Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzyme. Eur J Biochem. 1985 Feb 1;146(3):657–662. doi: 10.1111/j.1432-1033.1985.tb08701.x. [DOI] [PubMed] [Google Scholar]
  10. Küenzi M. T., Fiechter A. Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol. 1972;84(3):254–265. doi: 10.1007/BF00425203. [DOI] [PubMed] [Google Scholar]
  11. Lagunas R. Energy metabolism of Saccharomyces cerevisiae discrepancy between ATP balance and known metabolic functions. Biochim Biophys Acta. 1976 Sep 13;440(3):661–674. doi: 10.1016/0005-2728(76)90049-9. [DOI] [PubMed] [Google Scholar]
  12. Lagunas R., Gancedo C. Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur J Biochem. 1983 Dec 15;137(3):479–483. doi: 10.1111/j.1432-1033.1983.tb07851.x. [DOI] [PubMed] [Google Scholar]
  13. Larsson C., von Stockar U., Marison I., Gustafsson L. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J Bacteriol. 1993 Aug;175(15):4809–4816. doi: 10.1128/jb.175.15.4809-4816.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lidén G., Persson A., Gustafsson L., Niklasson C. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Appl Microbiol Biotechnol. 1995 Nov;43(6):1034–1038. doi: 10.1007/BF00166921. [DOI] [PubMed] [Google Scholar]
  15. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meredith S. A., Romano A. H. Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and respiration-deficient bakers' yeast. Biochim Biophys Acta. 1977 May 26;497(3):745–759. doi: 10.1016/0304-4165(77)90295-1. [DOI] [PubMed] [Google Scholar]
  17. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  18. Neijssel O. M., Buurman E. T., Teixeira de Mattos M. J. The role of futile cycles in the energetics of bacterial growth. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):252–255. doi: 10.1016/0005-2728(90)90260-b. [DOI] [PubMed] [Google Scholar]
  19. Neijssel O. M., Tempest D. W. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch Microbiol. 1975 Dec 31;106(3):251–258. doi: 10.1007/BF00446531. [DOI] [PubMed] [Google Scholar]
  20. Nordström K. Yeast growth and glycerol formation. Acta Chem Scand. 1966;20(4):1016–1025. doi: 10.3891/acta.chem.scand.20-1016. [DOI] [PubMed] [Google Scholar]
  21. Olz R., Larsson K., Adler L., Gustafsson L. Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress. J Bacteriol. 1993 Apr;175(8):2205–2213. doi: 10.1128/jb.175.8.2205-2213.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reibstein D., den Hollander J. A., Pilkis S. J., Shulman R. G. Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry. 1986 Jan 14;25(1):219–227. doi: 10.1021/bi00349a031. [DOI] [PubMed] [Google Scholar]
  23. Rogers P. J., Stewart P. R. Energetic efficiency and maintenance. Energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and micro-aerobically in continuous culture. Arch Microbiol. 1974;99(1):25–46. doi: 10.1007/BF00696220. [DOI] [PubMed] [Google Scholar]
  24. Schulze U., Larsen M. E., Villadsen J. Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae. Anal Biochem. 1995 Jun 10;228(1):143–149. doi: 10.1006/abio.1995.1325. [DOI] [PubMed] [Google Scholar]
  25. Schulze U., Lidén G., Nielsen J., Villadsen J. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiology. 1996 Aug;142(Pt 8):2299–2310. doi: 10.1099/13500872-142-8-2299. [DOI] [PubMed] [Google Scholar]
  26. Sierkstra L. N., Verbakel J. M., Verrips C. T. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. J Gen Microbiol. 1992 Dec;138(12):2559–2566. doi: 10.1099/00221287-138-12-2559. [DOI] [PubMed] [Google Scholar]
  27. Tempest D. W., Neijssel O. M. Physiological and energetic aspects of bacterial metabolite overproduction. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):169–176. doi: 10.1111/j.1574-6968.1992.tb14036.x. [DOI] [PubMed] [Google Scholar]
  28. Van Urk H., Mak P. R., Scheffers W. A., van Dijken J. P. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast. 1988 Dec;4(4):283–291. doi: 10.1002/yea.320040406. [DOI] [PubMed] [Google Scholar]
  29. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992 Jul;8(7):501–517. doi: 10.1002/yea.320080703. [DOI] [PubMed] [Google Scholar]
  30. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990 Mar;136(3):405–412. doi: 10.1099/00221287-136-3-405. [DOI] [PubMed] [Google Scholar]
  31. Verduyn C., Stouthamer A. H., Scheffers W. A., van Dijken J. P. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek. 1991 Jan;59(1):49–63. doi: 10.1007/BF00582119. [DOI] [PubMed] [Google Scholar]
  32. Visser W., Scheffers W. A., Batenburg-van der Vegte W. H., van Dijken J. P. Oxygen requirements of yeasts. Appl Environ Microbiol. 1990 Dec;56(12):3785–3792. doi: 10.1128/aem.56.12.3785-3792.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. den Hollander J. A., Ugurbil K., Brown T. R., Bednar M., Redfield C., Shulman R. G. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry. 1986 Jan 14;25(1):203–211. doi: 10.1021/bi00349a029. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES