Abstract
Moraxella lacunata and Moraxella bovis use type 4 pili to adhere to epithelial tissues of the cornea and conjunctiva. Primer extension analyses were used to map the transcriptional start sites for the genes encoding the major pilin subunits (tfpQ/I) and the DNA invertase (piv), which determines pilin type expression. tfpQ/I transcription starts at a sigma54-dependent promoter (tfpQ/Ip2) and, under certain growth conditions, this transcription is accompanied by weaker upstream transcription that starts at a potential sigma70-dependent promoter (tfpQ/Ip1). piv is expressed in both M. lacunata and M. bovis from a putative sigma70-dependent promoter (pivp) under all conditions assayed. Sigma54-dependent promoters require activators in order to initiate transcription; therefore, it is likely that tfpQ/Ip2 is also regulated by an activator in Moraxella. Primer extension assays with RNA isolated from Escherichia coli containing the subcloned pilin inversion region from M. lacunata showed that pivp is used for the expression of piv; however, tfpQ/Ip2 is not used for the transcription of tfpQ/I. Transcription from tfpQ/Ip2 was activated in E. coli when the sensor (PilS) and response regulator (PilR) proteins of type 4 pilin transcription in Pseudomonas aeruginosa were expressed from a plasmid. These results suggest that the expression of the type 4 pilin in M. lacunata and M. bovis is regulated not only by a site-specific DNA inversion system but also by a regulatory system which is functionally analogous to the PilS-PilR two-component system of P. aeruginosa.
Full Text
The Full Text of this article is available as a PDF (427.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backman K., Chen Y. M., Magasanik B. Physical and genetic characterization of the glnA--glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3743–3747. doi: 10.1073/pnas.78.6.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum J., Fedukowicz H. B., Jordan A. A survey of Moraxella corneal ulcers in a derelict population. Am J Ophthalmol. 1980 Oct;90(4):476–480. doi: 10.1016/s0002-9394(14)75014-7. [DOI] [PubMed] [Google Scholar]
- Boyd J. M., Lory S. Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol. 1996 Feb;178(3):831–839. doi: 10.1128/jb.178.3.831-839.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck M., Cannon W. Specific binding of the transcription factor sigma-54 to promoter DNA. Nature. 1992 Jul 30;358(6385):422–424. doi: 10.1038/358422a0. [DOI] [PubMed] [Google Scholar]
- Cannon W., Austin S., Moore M., Buck M. Identification of close contacts between the sigma N (sigma 54) protein and promoter DNA in closed promoter complexes. Nucleic Acids Res. 1995 Feb 11;23(3):351–356. doi: 10.1093/nar/23.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalrymple B., Mattick J. S. An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J Mol Evol. 1987;25(3):261–269. doi: 10.1007/BF02100020. [DOI] [PubMed] [Google Scholar]
- Fulks K. A., Marrs C. F., Stevens S. P., Green M. R. Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. J Bacteriol. 1990 Jan;172(1):310–316. doi: 10.1128/jb.172.1.310-316.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermodson M. A., Chen K. C., Buchanan T. M. Neisseria pili proteins: amino-terminal amino acid sequences and identification of an unusual amino acid. Biochemistry. 1978 Feb 7;17(3):442–445. doi: 10.1021/bi00596a010. [DOI] [PubMed] [Google Scholar]
- Hobbs M., Collie E. S., Free P. D., Livingston S. P., Mattick J. S. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol. 1993 Mar;7(5):669–682. doi: 10.1111/j.1365-2958.1993.tb01158.x. [DOI] [PubMed] [Google Scholar]
- Jayappa H. G., Lehr C. Pathogenicity and immunogenicity of piliated and nonpiliated phases of Moraxella bovis in calves. Am J Vet Res. 1986 Oct;47(10):2217–2221. [PubMed] [Google Scholar]
- Jin S., Ishimoto K. S., Lory S. PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter. Mol Microbiol. 1994 Dec;14(5):1049–1057. doi: 10.1111/j.1365-2958.1994.tb01338.x. [DOI] [PubMed] [Google Scholar]
- Juni E. Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Microbiol. 1974 Jan;27(1):16–24. doi: 10.1128/am.27.1.16-24.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keevil C. W., Major N. C., Davies D. B., Robinson A. Physiology and virulence determinants of Neisseria gonorrhoeae grown in glucose-, oxygen- or cystine-limited continuous culture. J Gen Microbiol. 1986 Dec;132(12):3289–3302. doi: 10.1099/00221287-132-12-3289. [DOI] [PubMed] [Google Scholar]
- Lenich A. G., Glasgow A. C. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements. J Bacteriol. 1994 Jul;176(13):4160–4164. doi: 10.1128/jb.176.13.4160-4164.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrs C. F., Rozsa F. W., Hackel M., Stevens S. P., Glasgow A. C. Identification, cloning, and sequencing of piv, a new gene involved in inverting the pilin genes of Moraxella lacunata. J Bacteriol. 1990 Aug;172(8):4370–4377. doi: 10.1128/jb.172.8.4370-4377.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrs C. F., Ruehl W. W., Schoolnik G. K., Falkow S. Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. J Bacteriol. 1988 Jul;170(7):3032–3039. doi: 10.1128/jb.170.7.3032-3039.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer M. P. A new set of useful cloning and expression vectors derived from pBlueScript. Gene. 1995 Sep 22;163(1):41–46. doi: 10.1016/0378-1119(95)00389-n. [DOI] [PubMed] [Google Scholar]
- Morett E., Buck M. In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol. 1989 Nov 5;210(1):65–77. doi: 10.1016/0022-2836(89)90291-x. [DOI] [PubMed] [Google Scholar]
- Pepe C. M., Eklund M. W., Strom M. S. Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion. Mol Microbiol. 1996 Feb;19(4):857–869. doi: 10.1046/j.1365-2958.1996.431958.x. [DOI] [PubMed] [Google Scholar]
- Rozsa F. W., Marrs C. F. Interesting sequence differences between the pilin gene inversion regions of Moraxella lacunata ATCC 17956 and Moraxella bovis Epp63. J Bacteriol. 1991 Jul;173(13):4000–4006. doi: 10.1128/jb.173.13.4000-4006.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruehl W. W., Marrs C. F., Fernandez R., Falkow S., Schoolnik G. K. Purification, characterization, and pathogenicity of Moraxella bovis pili. J Exp Med. 1988 Sep 1;168(3):983–1002. doi: 10.1084/jem.168.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruehl W. W., Marrs C. F., George L., Banks S. J., Schoolnik G. K. Infection rates, disease frequency, pilin gene rearrangement, and pilin expression in calves inoculated with Moraxella bovis pilin-specific isogenic variants. Am J Vet Res. 1993 Feb;54(2):248–253. [PubMed] [Google Scholar]
- Ruehl W. W., Marrs C., Beard M. K., Shokooki V., Hinojoza J. R., Banks S., Bieber D., Mattick J. S. Q pili enhance the attachment of Moraxella bovis to bovine corneas in vitro. Mol Microbiol. 1993 Jan;7(2):285–288. doi: 10.1111/j.1365-2958.1993.tb01119.x. [DOI] [PubMed] [Google Scholar]
- Schwartz B., Harrison L. H., Motter J. S., Motter R. N., Hightower A. W., Broome C. V. Investigation of an outbreak of Moraxella conjunctivitis at a Navajo boarding school. Am J Ophthalmol. 1989 Apr 15;107(4):341–347. doi: 10.1016/0002-9394(89)90656-9. [DOI] [PubMed] [Google Scholar]
- Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strom M. S., Lory S. Mapping of export signals of Pseudomonas aeruginosa pilin with alkaline phosphatase fusions. J Bacteriol. 1987 Jul;169(7):3181–3188. doi: 10.1128/jb.169.7.3181-3188.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strom M. S., Lory S. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol. 1993;47:565–596. doi: 10.1146/annurev.mi.47.100193.003025. [DOI] [PubMed] [Google Scholar]
- Strom M. S., Nunn D. N., Lory S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2404–2408. doi: 10.1073/pnas.90.6.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A. 1987 May;84(9):2833–2837. doi: 10.1073/pnas.84.9.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wedel A., Kustu S. The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev. 1995 Aug 15;9(16):2042–2052. doi: 10.1101/gad.9.16.2042. [DOI] [PubMed] [Google Scholar]
- Weiss D. S., Batut J., Klose K. E., Keener J., Kustu S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell. 1991 Oct 4;67(1):155–167. doi: 10.1016/0092-8674(91)90579-n. [DOI] [PubMed] [Google Scholar]