Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7306–7314. doi: 10.1128/jb.179.23.7306-7314.1997

Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain.

K Morimoto 1, S Karita 1, T Kimura 1, K Sakka 1, K Ohmiya 1
PMCID: PMC179680  PMID: 9393694

Abstract

The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin.

Full Text

The Full Text of this article is available as a PDF (499.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaak H., Schnellmann J., Walter S., Henrissat B., Schrempf H. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem. 1993 Jun 15;214(3):659–669. doi: 10.1111/j.1432-1033.1993.tb17966.x. [DOI] [PubMed] [Google Scholar]
  2. Bork P., Doolittle R. F. Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8990–8994. doi: 10.1073/pnas.89.19.8990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brurberg M. B., Nes I. F., Eijsink V. G. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology. 1996 Jul;142(Pt 7):1581–1589. doi: 10.1099/13500872-142-7-1581. [DOI] [PubMed] [Google Scholar]
  5. Béguin P., Aubert J. P. The biological degradation of cellulose. FEMS Microbiol Rev. 1994 Jan;13(1):25–58. doi: 10.1111/j.1574-6976.1994.tb00033.x. [DOI] [PubMed] [Google Scholar]
  6. Doolittle R. F., Bork P. Evolutionarily mobile modules in proteins. Sci Am. 1993 Oct;269(4):50–56. doi: 10.1038/scientificamerican1093-50. [DOI] [PubMed] [Google Scholar]
  7. Fujii T., Miyashita K. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J Gen Microbiol. 1993 Apr;139(4):677–686. doi: 10.1099/00221287-139-4-677. [DOI] [PubMed] [Google Scholar]
  8. Fukumori F., Sashihara N., Kudo T., Horikoshi K. Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology. J Bacteriol. 1986 Nov;168(2):479–485. doi: 10.1128/jb.168.2.479-485.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gleave A. P., Taylor R. K., Morris B. A., Greenwood D. R. Cloning and sequencing of a gene encoding the 69-kDa extracellular chitinase of Janthinobacterium lividum. FEMS Microbiol Lett. 1995 Sep 15;131(3):279–288. doi: 10.1111/j.1574-6968.1995.tb07788.x. [DOI] [PubMed] [Google Scholar]
  11. Harpster M. H., Dunsmuir P. Nucleotide sequence of the chitinase B gene of Serratia marcescens QMB1466. Nucleic Acids Res. 1989 Jul 11;17(13):5395–5395. doi: 10.1093/nar/17.13.5395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hefford M. A., Laderoute K., Willick G. E., Yaguchi M., Seligy V. L. Bipartite organization of the Bacillus subtilis endo-beta-1,4-glucanase revealed by C-terminal mutations. Protein Eng. 1992 Jul;5(5):433–439. doi: 10.1093/protein/5.5.433. [DOI] [PubMed] [Google Scholar]
  13. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hines D. A., Saurugger P. N., Ihler G. M., Benedik M. J. Genetic analysis of extracellular proteins of Serratia marcescens. J Bacteriol. 1988 Sep;170(9):4141–4146. doi: 10.1128/jb.170.9.4141-4146.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iseli B., Boller T., Neuhaus J. M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 1993 Sep;103(1):221–226. doi: 10.1104/pp.103.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones J. D., Grady K. L., Suslow T. V., Bedbrook J. R. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 1986 Mar;5(3):467–473. doi: 10.1002/j.1460-2075.1986.tb04235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kraulis J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Sep 5;28(18):7241–7257. doi: 10.1021/bi00444a016. [DOI] [PubMed] [Google Scholar]
  18. Kuranda M. J., Robbins P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991 Oct 15;266(29):19758–19767. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Little E., Bork P., Doolittle R. F. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J Mol Evol. 1994 Dec;39(6):631–643. doi: 10.1007/BF00160409. [DOI] [PubMed] [Google Scholar]
  22. Mahoney P. A., Weber U., Onofrechuk P., Biessmann H., Bryant P. J., Goodman C. S. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell. 1991 Nov 29;67(5):853–868. doi: 10.1016/0092-8674(91)90359-7. [DOI] [PubMed] [Google Scholar]
  23. Meinke A., Braun C., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J Bacteriol. 1991 Jan;173(1):308–314. doi: 10.1128/jb.173.1.308-314.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Melasniemi H., Paloheimo M., Hemiö L. Nucleotide sequence of the alpha-amylase-pullulanase gene from Clostridium thermohydrosulfuricum. J Gen Microbiol. 1990 Mar;136(3):447–454. doi: 10.1099/00221287-136-3-447. [DOI] [PubMed] [Google Scholar]
  25. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  26. O'Brien M., Colwell R. R. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide. Appl Environ Microbiol. 1987 Jul;53(7):1718–1720. doi: 10.1128/aem.53.7.1718-1720.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M., Watanabe T. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol. 1996 Sep;178(17):5065–5070. doi: 10.1128/jb.178.17.5065-5070.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ozawa M., Engel J., Kemler R. Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell. 1990 Nov 30;63(5):1033–1038. doi: 10.1016/0092-8674(90)90506-a. [DOI] [PubMed] [Google Scholar]
  29. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure. 1994 Dec 15;2(12):1169–1180. doi: 10.1016/s0969-2126(94)00119-7. [DOI] [PubMed] [Google Scholar]
  30. Radwan H. H., Plattner H. J., Menge U., Diekmann H. The 92-kDa chitinase from Streptomyces olivaceoviridis contains a lysine-C endoproteinase at its N-terminus. FEMS Microbiol Lett. 1994 Jul 1;120(1-2):31–35. doi: 10.1111/j.1574-6968.1994.tb07003.x. [DOI] [PubMed] [Google Scholar]
  31. Robbins P. W., Albright C., Benfield B. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J Biol Chem. 1988 Jan 5;263(1):443–447. [PubMed] [Google Scholar]
  32. Romaguera A., Menge U., Breves R., Diekmann H. Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity. J Bacteriol. 1992 Jun;174(11):3450–3454. doi: 10.1128/jb.174.11.3450-3454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  34. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  35. Shiro M., Ueda M., Kawaguchi T., Arai M. Cloning of a cluster of chitinase genes from Aeromonas sp. No. 10S-24. Biochim Biophys Acta. 1996 Feb 7;1305(1-2):44–48. doi: 10.1016/0167-4781(95)00213-8. [DOI] [PubMed] [Google Scholar]
  36. Sitrit Y., Vorgias C. E., Chet I., Oppenheim A. B. Cloning and primary structure of the chiA gene from Aeromonas caviae. J Bacteriol. 1995 Jul;177(14):4187–4189. doi: 10.1128/jb.177.14.4187-4189.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Teather R. M., Wood P. J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982 Apr;43(4):777–780. doi: 10.1128/aem.43.4.777-780.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tormo J., Lamed R., Chirino A. J., Morag E., Bayer E. A., Shoham Y., Steitz T. A. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 1996 Nov 1;15(21):5739–5751. [PMC free article] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tsujibo H., Orikoshi H., Imada C., Okami Y., Miyamoto K., Inamori Y. Site-directed mutagenesis of chitinase from Alteromonas sp. strain O-7. Biosci Biotechnol Biochem. 1993 Aug;57(8):1396–1397. doi: 10.1271/bbb.57.1396. [DOI] [PubMed] [Google Scholar]
  41. Tsujibo H., Orikoshi H., Tanno H., Fujimoto K., Miyamoto K., Imada C., Okami Y., Inamori Y. Cloning, sequence, and expression of a chitinase gene from a marine bacterium, Altermonas sp. strain O-7. J Bacteriol. 1993 Jan;175(1):176–181. doi: 10.1128/jb.175.1.176-181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tsujibo H., Yoshida Y., Miyamoto K., Imada C., Okami Y., Inamori Y. Purification, properties, and partial amino acid sequence of chitinase from a marine Alteromonas sp. strain O-7. Can J Microbiol. 1992 Sep;38(9):891–897. doi: 10.1139/m92-145. [DOI] [PubMed] [Google Scholar]
  43. Ueda M., Fujiwara A., Kawaguchi T., Arai M. Purification and some properties of six chitinases from Aeromonas sp. no. 10S-24. Biosci Biotechnol Biochem. 1995 Nov;59(11):2162–2164. doi: 10.1271/bbb.59.2162. [DOI] [PubMed] [Google Scholar]
  44. Ueda M., Shiro M., Kawaguchi T., Arai M. Expression of the chitinase III gene of Aeromonas sp. no. 10S-24 in Escherichia coli. Biosci Biotechnol Biochem. 1996 Jul;60(7):1195–1197. doi: 10.1271/bbb.60.1195. [DOI] [PubMed] [Google Scholar]
  45. Watanabe T., Ito Y., Yamada T., Hashimoto M., Sekine S., Tanaka H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol. 1994 Aug;176(15):4465–4472. doi: 10.1128/jb.176.15.4465-4472.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watanabe T., Kobori K., Miyashita K., Fujii T., Sakai H., Uchida M., Tanaka H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem. 1993 Sep 5;268(25):18567–18572. [PubMed] [Google Scholar]
  47. Watanabe T., Oyanagi W., Suzuki K., Ohnishi K., Tanaka H. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J Bacteriol. 1992 Jan;174(2):408–414. doi: 10.1128/jb.174.2.408-414.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Watanabe T., Oyanagi W., Suzuki K., Tanaka H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol. 1990 Jul;172(7):4017–4022. doi: 10.1128/jb.172.7.4017-4022.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Watanabe T., Suzuki K., Oyanagi W., Ohnishi K., Tanaka H. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem. 1990 Sep 15;265(26):15659–15665. [PubMed] [Google Scholar]
  50. Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]
  51. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES