Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7315–7320. doi: 10.1128/jb.179.23.7315-7320.1997

In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation.

M L Gwinn 1, A E Stellwagen 1, N L Craig 1, J F Tomb 1, H O Smith 1
PMCID: PMC179681  PMID: 9393695

Abstract

Haemophilus influenzae Rd is a gram-negative bacterium capable of natural DNA transformation. The competent state occurs naturally in late exponential growth or can be induced by a nutritional downshift or by transient anaerobiosis. The genes cya, crp, topA, and sxy (tfoX) are known to function in the regulation of competence development. The phosphoenolpyruvate:carbohydrate phosphotransferase system functions to maintain levels of cyclic AMP necessary for competence development but is not directly involved in regulation. The exact signal(s) for competence and the genes that mediate the signal(s) are still unknown. In an effort to find additional regulatory genes, H. influenzae Rd was mutated by using an in vitro Tn7 system and screened for mutants with a reduced ability to induce the competence-regulatory gene, comA. Insertions in atpA, a gene coding for the alpha subunit of the F1 cytoplasmic domain of the ATP synthase, reduce transformation frequencies about 20-fold and cause a significant reduction in expression of competence-regulatory genes, while the expression of constitutive competence genes is only minimally affected. In addition, we found that an insertion in atpB, which encodes the a subunit of the F0 membrane-spanning domain, has a similar effect on transformation frequencies.

Full Text

The Full Text of this article is available as a PDF (166.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton R. J., Kubo K. M., Feng J. N., Craig N. L. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell. 1993 Mar 26;72(6):931–943. doi: 10.1016/0092-8674(93)90581-a. [DOI] [PubMed] [Google Scholar]
  2. Barcak G. J., Chandler M. S., Redfield R. J., Tomb J. F. Genetic systems in Haemophilus influenzae. Methods Enzymol. 1991;204:321–342. doi: 10.1016/0076-6879(91)04016-h. [DOI] [PubMed] [Google Scholar]
  3. Botsford J. L., Harman J. G. Cyclic AMP in prokaryotes. Microbiol Rev. 1992 Mar;56(1):100–122. doi: 10.1128/mr.56.1.100-122.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bremer W., Kooistra J., Hellingwerf K. J., Konings W. N. Role of the electrochemical proton gradient in genetic transformation of Haemophilus influenzae. J Bacteriol. 1984 Mar;157(3):868–873. doi: 10.1128/jb.157.3.868-873.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandler M. S., Smith R. A. Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene. 1996 Feb 22;169(1):25–31. doi: 10.1016/0378-1119(95)00777-6. [DOI] [PubMed] [Google Scholar]
  6. Chandler M. S. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1626–1630. doi: 10.1073/pnas.89.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clifton S. W., McCarthy D., Roe B. A. Sequence of the rec-2 locus of Haemophilus influenzae: homologies to comE-ORF3 of Bacillus subtilis and msbA of Escherichia coli. Gene. 1994 Aug 19;146(1):95–100. doi: 10.1016/0378-1119(94)90840-0. [DOI] [PubMed] [Google Scholar]
  8. Craig N. L. Transposon Tn7. Curr Top Microbiol Immunol. 1996;204:27–48. doi: 10.1007/978-3-642-79795-8_2. [DOI] [PubMed] [Google Scholar]
  9. Dorocicz I. R., Williams P. M., Redfield R. J. The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence. J Bacteriol. 1993 Nov;175(22):7142–7149. doi: 10.1128/jb.175.22.7142-7149.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  11. GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol. 1961 Jul;44:1201–1227. doi: 10.1085/jgp.44.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gwinn M. L., Yi D., Smith H. O., Tomb J. F. Role of the two-component signal transduction and the phosphoenolpyruvate: carbohydrate phosphotransferase systems in competence development of Haemophilus influenzae Rd. J Bacteriol. 1996 Nov;178(21):6366–6368. doi: 10.1128/jb.178.21.6366-6368.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  15. Jensen P. R., Michelsen O. Carbon and energy metabolism of atp mutants of Escherichia coli. J Bacteriol. 1992 Dec;174(23):7635–7641. doi: 10.1128/jb.174.23.7635-7641.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karudapuram S., Barcak G. J. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol. 1997 Aug;179(15):4815–4820. doi: 10.1128/jb.179.15.4815-4820.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  18. Macfadyen L. P., Dorocicz I. R., Reizer J., Saier M. H., Jr, Redfield R. J. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol Microbiol. 1996 Sep;21(5):941–952. doi: 10.1046/j.1365-2958.1996.441420.x. [DOI] [PubMed] [Google Scholar]
  19. Martinez E., Bartolomé B., de la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene. 1988 Aug 15;68(1):159–162. doi: 10.1016/0378-1119(88)90608-7. [DOI] [PubMed] [Google Scholar]
  20. Müller W., Keppner W., Rasched I. Versatile kanamycin-resistance cartridges for vector construction in Escherichia coli. Gene. 1986;46(1):131–133. doi: 10.1016/0378-1119(86)90176-9. [DOI] [PubMed] [Google Scholar]
  21. Redfield R. J. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J Bacteriol. 1991 Sep;173(18):5612–5618. doi: 10.1128/jb.173.18.5612-5618.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stellwagen A. E., Craig N. L. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics. 1997 Mar;145(3):573–585. doi: 10.1093/genetics/145.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomb J. F. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10252–10256. doi: 10.1073/pnas.89.21.10252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomb J. F., el-Hajj H., Smith H. O. Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene. 1991 Jul 31;104(1):1–10. doi: 10.1016/0378-1119(91)90457-m. [DOI] [PubMed] [Google Scholar]
  25. Williams P. M., Bannister L. A., Redfield R. J. The Haemophilus influenzae sxy-1 mutation is in a newly identified gene essential for competence. J Bacteriol. 1994 Nov;176(22):6789–6794. doi: 10.1128/jb.176.22.6789-6794.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wise E. M., Jr, Alexander S. P., Powers M. Adenosine 3':5'-cyclic monophosphate as a regulator of bacterial transformation. Proc Natl Acad Sci U S A. 1973 Feb;70(2):471–474. doi: 10.1073/pnas.70.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zulty J. J., Barcak G. J. Identification of a DNA transformation gene required for com101A+ expression and supertransformer phenotype in Haemophilus influenzae. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3616–3620. doi: 10.1073/pnas.92.8.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. von Meyenburg K., Jørgensen B. B., van Deurs B. Physiological and morphological effects of overproduction of membrane-bound ATP synthase in Escherichia coli K-12. EMBO J. 1984 Aug;3(8):1791–1797. doi: 10.1002/j.1460-2075.1984.tb02047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES