Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7360–7368. doi: 10.1128/jb.179.23.7360-7368.1997

A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms.

K T Seow 1, G Meurer 1, M Gerlitz 1, E Wendt-Pienkowski 1, C R Hutchinson 1, J Davies 1
PMCID: PMC179686  PMID: 9393700

Abstract

To examine as randomly as possible the role of the beta-ketoacyl and acyl carrier protein (ACP) components of bacterial type II polyketide synthases (PKSs), homologs of the chain-length-factor (CLF) genes were cloned from the environmental community of microorganisms. With PCR primers derived from conserved regions of known ketosynthase (KSalpha) and ACP genes specifying the formation of 16- to 24-carbon polyketides, two CLF (KSbeta) genes were cloned from unclassified streptomycetes isolated from the soil, and two were cloned from soil DNA without the prior isolation of the parent microorganism. The sequence and deduced product of each gene were distinct from those of known KSbeta genes and, by phylogenetic analysis, belonged to antibiotic-producing PKS gene clusters. Hybrid PKS gene cassettes were constructed with each novel KSbeta gene substituted for the actI-ORF2 or tcmL KSbeta subunit genes, along with the respective actI-ORF1 or tcmK KSalpha, tcmM ACP, and tcmN cyclase genes, and were found to produce an octaketide or decaketide product characteristic of the ones known to be made by the heterologous KSalpha gene partner. Since substantially less than 1% of the microorganisms present in soil are thought to be cultivatable by standard methods, this work demonstrates a potential way to gain access to a more extensive range of microbial molecular diversity and to biosynthetic pathways whose products can be tested for biological applications.

Full Text

The Full Text of this article is available as a PDF (297.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowsmith T. J., Malpartida F., Sherman D. H., Birch A., Hopwood D. A., Robinson J. A. Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis. Mol Gen Genet. 1992 Aug;234(2):254–264. doi: 10.1007/BF00283846. [DOI] [PubMed] [Google Scholar]
  2. Beck J., Ripka S., Siegner A., Schiltz E., Schweizer E. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem. 1990 Sep 11;192(2):487–498. doi: 10.1111/j.1432-1033.1990.tb19252.x. [DOI] [PubMed] [Google Scholar]
  3. Bergh S., Uhlén M. Analysis of a polyketide synthesis-encoding gene cluster of Streptomyces curacoi. Gene. 1992 Aug 1;117(1):131–136. doi: 10.1016/0378-1119(92)90501-f. [DOI] [PubMed] [Google Scholar]
  4. Bibb M. J., Biró S., Motamedi H., Collins J. F., Hutchinson C. R. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 1989 Sep;8(9):2727–2736. doi: 10.1002/j.1460-2075.1989.tb08414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bibb M. J., Sherman D. H., Omura S., Hopwood D. A. Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene. 1994 May 3;142(1):31–39. doi: 10.1016/0378-1119(94)90351-4. [DOI] [PubMed] [Google Scholar]
  6. Blanco G., Pereda A., Brian P., Méndez C., Chater K. F., Salas J. A. A hydroxylase-like gene product contributes to synthesis of a polyketide spore pigment in Streptomyces halstedii. J Bacteriol. 1993 Dec;175(24):8043–8048. doi: 10.1128/jb.175.24.8043-8048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bormann C., Aberle K., Fiedler H. P., Schrempf H. Genetic complementation of Streptomyces tendae deficient in nikkomycin production. Appl Microbiol Biotechnol. 1990 Jan;32(4):424–430. doi: 10.1007/BF00903777. [DOI] [PubMed] [Google Scholar]
  8. Brown D. W., Yu J. H., Kelkar H. S., Fernandes M., Nesbitt T. C., Keller N. P., Adams T. H., Leonard T. J. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418–1422. doi: 10.1073/pnas.93.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byrne K. M., Hilton B. D., White R. J., Misra R., Pandey R. C. Biosynthesis of fredericamycin A, a new antitumor antibiotic. Biochemistry. 1985 Jan 15;24(2):478–486. doi: 10.1021/bi00323a035. [DOI] [PubMed] [Google Scholar]
  10. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature. 1990 Nov 8;348(6297):176–178. doi: 10.1038/348176a0. [DOI] [PubMed] [Google Scholar]
  11. Cortes J., Wiesmann K. E., Roberts G. A., Brown M. J., Staunton J., Leadlay P. F. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science. 1995 Jun 9;268(5216):1487–1489. doi: 10.1126/science.7770773. [DOI] [PubMed] [Google Scholar]
  12. Davis N. K., Chater K. F. Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol. 1990 Oct;4(10):1679–1691. doi: 10.1111/j.1365-2958.1990.tb00545.x. [DOI] [PubMed] [Google Scholar]
  13. Decker H., Haag S. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tü2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol. 1995 Nov;177(21):6126–6136. doi: 10.1128/jb.177.21.6126-6136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Decker H., Motamedi H., Hutchinson C. R. Nucleotide sequences and heterologous expression of tcmG and tcmP, biosynthetic genes for tetracenomycin C in Streptomyces glaucescens. J Bacteriol. 1993 Jun;175(12):3876–3886. doi: 10.1128/jb.175.12.3876-3886.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L. Modular organization of genes required for complex polyketide biosynthesis. Science. 1991 May 3;252(5006):675–679. doi: 10.1126/science.2024119. [DOI] [PubMed] [Google Scholar]
  17. Fernández-Moreno M. A., Martínez E., Boto L., Hopwood D. A., Malpartida F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem. 1992 Sep 25;267(27):19278–19290. [PubMed] [Google Scholar]
  18. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  19. Fu H., Hopwood D. A., Khosla C. Engineered biosynthesis of novel polyketides: evidence for temporal, but not regiospecific, control of cyclization of an aromatic polyketide precursor. Chem Biol. 1994 Dec;1(4):205–210. doi: 10.1016/1074-5521(94)90012-4. [DOI] [PubMed] [Google Scholar]
  20. Grimm A., Madduri K., Ali A., Hutchinson C. R. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene. 1994 Dec 30;151(1-2):1–10. doi: 10.1016/0378-1119(94)90625-4. [DOI] [PubMed] [Google Scholar]
  21. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology. 1994 Dec;140(Pt 12):3379–3389. doi: 10.1099/13500872-140-12-3379. [DOI] [PubMed] [Google Scholar]
  22. Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol. 1983 Jul;129(7):2257–2269. doi: 10.1099/00221287-129-7-2257. [DOI] [PubMed] [Google Scholar]
  24. Hutchinson C. R., Fujii I. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol. 1995;49:201–238. doi: 10.1146/annurev.mi.49.100195.001221. [DOI] [PubMed] [Google Scholar]
  25. Jensen P. R., Fenical W. Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol. 1994;48:559–584. doi: 10.1146/annurev.mi.48.100194.003015. [DOI] [PubMed] [Google Scholar]
  26. Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol. 1993;47:875–912. doi: 10.1146/annurev.mi.47.100193.004303. [DOI] [PubMed] [Google Scholar]
  27. Kauppinen S., Siggaard-Andersen M., von Wettstein-Knowles P. beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357–370. doi: 10.1007/BF02983311. [DOI] [PubMed] [Google Scholar]
  28. Kim E. S., Bibb M. J., Butler M. J., Hopwood D. A., Sherman D. H. Sequences of the oxytetracycline polyketide synthase-encoding otc genes from Streptomyces rimosus. Gene. 1994 Apr 8;141(1):141–142. doi: 10.1016/0378-1119(94)90144-9. [DOI] [PubMed] [Google Scholar]
  29. Kim E. S., Cramer K. D., Shreve A. L., Sherman D. H. Heterologous expression of an engineered biosynthetic pathway: functional dissection of type II polyketide synthase components in Streptomyces species. J Bacteriol. 1995 Mar;177(5):1202–1207. doi: 10.1128/jb.177.5.1202-1207.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Le Gouill C., Desmarais D., Déry C. V. Saccharopolyspora hirsuta 367 encodes clustered genes similar to ketoacyl synthase, ketoacyl reductase, acyl carrier protein, and biotin carboxyl carrier protein. Mol Gen Genet. 1993 Jul;240(1):146–150. doi: 10.1007/BF00276894. [DOI] [PubMed] [Google Scholar]
  31. Lombó F., Blanco G., Fernández E., Méndez C., Salas J. A. Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene. 1996 Jun 12;172(1):87–91. doi: 10.1016/0378-1119(96)00029-7. [DOI] [PubMed] [Google Scholar]
  32. MacNeil D. J., Occi J. L., Gewain K. M., MacNeil T. Correlation of the avermectin polyketide synthase genes to the avermectin structure. Implications for designing novel avermectins. Ann N Y Acad Sci. 1994 May 2;721:123–132. doi: 10.1111/j.1749-6632.1994.tb47384.x. [DOI] [PubMed] [Google Scholar]
  33. McDaniel R., Ebert-Khosla S., Fu H., Hopwood D. A., Khosla C. Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11542–11546. doi: 10.1073/pnas.91.24.11542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Engineered biosynthesis of novel polyketides. Science. 1993 Dec 3;262(5139):1546–1550. doi: 10.1126/science.8248802. [DOI] [PubMed] [Google Scholar]
  35. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature. 1995 Jun 15;375(6532):549–554. doi: 10.1038/375549a0. [DOI] [PubMed] [Google Scholar]
  36. Meurer G., Hutchinson C. R. Functional analysis of putative beta-ketoacyl:acyl carrier protein synthase and acyltransferase active site motifs in a type II polyketide synthase of Streptomyces glaucescens. J Bacteriol. 1995 Jan;177(2):477–481. doi: 10.1128/jb.177.2.477-481.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Monaghan R. L., Tkacz J. S. Bioactive microbial products: focus upon mechanism of action. Annu Rev Microbiol. 1990;44:271–301. doi: 10.1146/annurev.mi.44.100190.001415. [DOI] [PubMed] [Google Scholar]
  38. Motamedi H., Hutchinson C. R. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4445–4449. doi: 10.1073/pnas.84.13.4445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Motamedi H., Wendt-Pienkowski E., Hutchinson C. R. Isolation of tetracenomycin C-nonproducing Streptomyces glaucescens mutants. J Bacteriol. 1986 Aug;167(2):575–580. doi: 10.1128/jb.167.2.575-580.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Piecq M., Dehottay P., Biot A., Dusart J. Cloning and nucleotide sequence of a region of the Kibdelosporangium aridum genome homologous to polyketide biosynthetic genes. DNA Seq. 1994;4(4):219–229. doi: 10.3109/10425179409020845. [DOI] [PubMed] [Google Scholar]
  41. Rajgarhia V. B., Strohl W. R. Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. J Bacteriol. 1997 Apr;179(8):2690–2696. doi: 10.1128/jb.179.8.2690-2696.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  43. Schupp T., Toupet C., Cluzel B., Neff S., Hill S., Beck J. J., Ligon J. M. A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol. 1995 Jul;177(13):3673–3679. doi: 10.1128/jb.177.13.3673-3679.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwecke T., Aparicio J. F., Molnár I., König A., Khaw L. E., Haydock S. F., Oliynyk M., Caffrey P., Cortés J., Lester J. B. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7839–7843. doi: 10.1073/pnas.92.17.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shen B., Hutchinson C. R. Deciphering the mechanism for the assembly of aromatic polyketides by a bacterial polyketide synthase. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6600–6604. doi: 10.1073/pnas.93.13.6600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sherman D. H., Kim E. S., Bibb M. J., Hopwood D. A. Functional replacement of genes for individual polyketide synthase components in Streptomyces coelicolor A3(2) by heterologous genes from a different polyketide pathway. J Bacteriol. 1992 Oct;174(19):6184–6190. doi: 10.1128/jb.174.19.6184-6190.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794–8797. doi: 10.1073/pnas.89.18.8794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stachelhaus T., Schneider A., Marahiel M. A. Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol. 1996 Jul 26;52(2):177–186. doi: 10.1016/0006-2952(96)00111-6. [DOI] [PubMed] [Google Scholar]
  50. Stachelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995 Jul 7;269(5220):69–72. doi: 10.1126/science.7604280. [DOI] [PubMed] [Google Scholar]
  51. Summers R. G., Wendt-Pienkowski E., Motamedi H., Hutchinson C. R. Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. J Bacteriol. 1992 Mar;174(6):1810–1820. doi: 10.1128/jb.174.6.1810-1820.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Summers R. G., Wendt-Pienkowski E., Motamedi H., Hutchinson C. R. The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J Bacteriol. 1993 Dec;175(23):7571–7580. doi: 10.1128/jb.175.23.7571-7580.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vara J., Lewandowska-Skarbek M., Wang Y. G., Donadio S., Hutchinson C. R. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol. 1989 Nov;171(11):5872–5881. doi: 10.1128/jb.171.11.5872-5881.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ye J., Dickens M. L., Plater R., Li Y., Lawrence J., Strohl W. R. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol. 1994 Oct;176(20):6270–6280. doi: 10.1128/jb.176.20.6270-6280.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ylihonko K., Tuikkanen J., Jussila S., Cong L., Mäntsälä P. A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early-block mutations in the anthracycline pathway. Mol Gen Genet. 1996 May 23;251(2):113–120. doi: 10.1007/BF02172908. [DOI] [PubMed] [Google Scholar]
  57. Yu T. W., Bibb M. J., Revill W. P., Hopwood D. A. Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. J Bacteriol. 1994 May;176(9):2627–2634. doi: 10.1128/jb.176.9.2627-2634.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zawada R. J., Khosla C. Domain analysis of the molecular recognition features of aromatic polyketide synthase subunits. J Biol Chem. 1997 Jun 27;272(26):16184–16188. doi: 10.1074/jbc.272.26.16184. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES