Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to glycine with the transfer of the one-carbon group to tetrahydrofolate to form 5,10-methylenetetrahydrofolate. No SHMT has been purified from a nonmethanogenic Archaea strain, in part because this group of organisms uses modified folates as the one-carbon acceptor. These modified folates are not readily available for use in assays for SHMT activity. This report describes the purification and characterization of SHMT from the thermophilic organism Sulfolobus solfataricus. The exchange of the alpha-proton of glycine with solvent protons in the absence of the modified folate was used as the activity assay. The purified protein catalyzes the synthesis of serine from glycine and a synthetic derivative of a fragment of the natural modified folate found in S. solfataricus. Replacement of the modified folate with tetrahydrofolate did not support serine synthesis. In addition, this SHMT also catalyzed the cleavage of both allo-threonine and beta-phenylserine in the absence of the modified folate. The cleavage of these two amino acids in the absence of tetrahydrofolate is a property of other characterized SHMTs. The enzyme contains covalently bound pyridoxal phosphate. Sequences of three peptides showed significant similarity with those of peptides of SHMTs from two methanogens.
Full Text
The Full Text of this article is available as a PDF (515.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Hopkins S., Schirch V. Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis. J Biol Chem. 1986 Mar 5;261(7):3363–3369. [PubMed] [Google Scholar]
- Maras B., Greenblatt H. M., Shoham G., Spungin-Bialik A., Blumberg S., Barra D. Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases. Eur J Biochem. 1996 Mar 15;236(3):843–846. doi: 10.1111/j.1432-1033.1996.00843.x. [DOI] [PubMed] [Google Scholar]
- Marolewski A., Smith J. M., Benkovic S. J. Cloning and characterization of a new purine biosynthetic enzyme: a non-folate glycinamide ribonucleotide transformylase from E. coli. Biochemistry. 1994 Mar 8;33(9):2531–2537. doi: 10.1021/bi00175a023. [DOI] [PubMed] [Google Scholar]
- Nyce G. W., White R. H. dTMP biosynthesis in Archaea. J Bacteriol. 1996 Feb;178(3):914–916. doi: 10.1128/jb.178.3.914-916.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascarella S., Schirch V., Bossa F. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. FEBS Lett. 1993 Sep 27;331(1-2):145–149. doi: 10.1016/0014-5793(93)80314-k. [DOI] [PubMed] [Google Scholar]
- Schirch V., Strong W. B. Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys. 1989 Mar;269(2):371–380. doi: 10.1016/0003-9861(89)90120-3. [DOI] [PubMed] [Google Scholar]
- Vaupel M., Dietz H., Linder D., Thauer R. K. Primary structure of cyclohydrolase (Mch) from Methanobacterium thermoautotrophicum (strain Marburg) and functional expression of the mch gene in Escherichia coli. Eur J Biochem. 1996 Feb 15;236(1):294–300. doi: 10.1111/j.1432-1033.1996.00294.x. [DOI] [PubMed] [Google Scholar]
- White R. H. Biosynthesis of methanopterin. Biochemistry. 1996 Mar 19;35(11):3447–3456. doi: 10.1021/bi952308m. [DOI] [PubMed] [Google Scholar]
- White R. H. Occurrence and biosynthesis of 5-aminoimidazole-4-carboxamide ribonucleotide and N-(beta-D-ribofuranosyl)formamide 5'-phosphate in Methanobacterium thermoautotrophicum delta(H). J Bacteriol. 1997 Jan;179(2):563–566. doi: 10.1128/jb.179.2.563-566.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R. H. Structures of the modified folates in the extremely thermophilic archaebacterium Thermococcus litoralis. J Bacteriol. 1993 Jun;175(11):3661–3663. doi: 10.1128/jb.175.11.3661-3663.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou D., White R. H. 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane, a structural component of the modified folate in Sulfolobus solfataricus. J Bacteriol. 1992 Jul;174(14):4576–4582. doi: 10.1128/jb.174.14.4576-4582.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]