Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7488–7496. doi: 10.1128/jb.179.23.7488-7496.1997

Structure and evolution of NGRRS-1, a complex, repeated element in the genome of Rhizobium sp. strain NGR234.

X Perret 1, V Viprey 1, C Freiberg 1, W J Broughton 1
PMCID: PMC179701  PMID: 9393715

Abstract

Much of the remarkable ability of Rhizobium sp. strain NGR234 to nodulate at least 110 genera of legumes, as well as the nonlegume Parasponia andersonii, stems from the more than 80 different Nod factors it secretes. Except for nodE, nodG, and nodPQ, which are on the chromosome, most Nod factor biosynthesis genes are dispersed over the 536,165-bp symbiotic plasmid, pNGR234a. Mosaic sequences and insertion sequences (ISs) comprise 18% of pNGR234a. Many of them are clustered, and these IS islands divide the replicon into large blocks of functionally related genes. At 6 kb, NGRRS-1 is a striking example: there is one copy on pNGR234a and three others on the chromosome. DNA sequence comparisons of two NGRRS-1 elements identified three types of IS, NGRIS-2, NGRIS-4, and NGRIS-10. Here we show that all four copies of NGRRS-1 probably originated from transposition of NGRIS-4 into a more ancient IS-like sequence, NGRIS-10. Remarkably, all nine copies of NGRIS-4 have transposed into other ISs. It is unclear whether the accumulation of potentially mutagenic sequences in large clusters is due to the nature of the IS involved or to some selection process. Nevertheless, a direct consequence of the preferential targeting of transposons into such IS islands is to minimize the likelihood of disrupting vital functions.

Full Text

The Full Text of this article is available as a PDF (468.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam J., Vrba J. M., Cai Y., Martin J. A., Weislo L. J., Curtis S. E. Characterization of the IS895 family of insertion sequences from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1991 Sep;173(18):5778–5783. doi: 10.1128/jb.173.18.5778-5783.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Badenoch-Jones J., Holton T. A., Morrison C. M., Scott K. F., Shine J. Structural and functional analysis of nitrogenase genes from the broad-host-range Rhizobium strain ANU240. Gene. 1989 Apr 15;77(1):141–153. doi: 10.1016/0378-1119(89)90368-5. [DOI] [PubMed] [Google Scholar]
  4. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  5. Bjourson A. J., Stone C. E., Cooper J. E. Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specific Rhizobium DNA sequences. Appl Environ Microbiol. 1992 Jul;58(7):2296–2301. doi: 10.1128/aem.58.7.2296-2301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borodovsky M., Koonin E. V., Rudd K. E. New genes in old sequence: a strategy for finding genes in the bacterial genome. Trends Biochem Sci. 1994 Aug;19(8):309–313. doi: 10.1016/0968-0004(94)90067-1. [DOI] [PubMed] [Google Scholar]
  7. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  8. Broughton W. J., Heycke N., Z A H. M., Pankhurst C. E. Plasmid-linked nif and "nod" genes in fast-growing rhizobia that nodulate Glycine max, Psophocarpus tetragonolobus, and Vigna unguiculata. Proc Natl Acad Sci U S A. 1984 May;81(10):3093–3097. doi: 10.1073/pnas.81.10.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Broughton W. J., Wong C. H., Lewin A., Samrey U., Myint H., Meyer H., Dowling D. N., Simon R. Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes. J Cell Biol. 1986 Apr;102(4):1173–1182. doi: 10.1083/jcb.102.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  11. Cami B., Kourilsky P. Screening of cloned recombinant DNA in bacteria by in situ colony hybridization. Nucleic Acids Res. 1978 Jul;5(7):2381–2390. doi: 10.1093/nar/5.7.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chua K. Y., Pankhurst C. E., Macdonald P. E., Hopcroft D. H., Jarvis B. D., Scott D. B. Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol. 1985 Apr;162(1):335–343. doi: 10.1128/jb.162.1.335-343.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cohen A., Lam W. L., Charlebois R. L., Doolittle W. F., Schalkwyk L. C. Localizing genes on the map of the genome of Haloferax volcanii, one of the Archaea. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1602–1606. doi: 10.1073/pnas.89.5.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dusha I., Kovalenko S., Banfalvi Z., Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol. 1987 Apr;169(4):1403–1409. doi: 10.1128/jb.169.4.1403-1409.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997 May 22;387(6631):394–401. doi: 10.1038/387394a0. [DOI] [PubMed] [Google Scholar]
  16. Freiberg C., Perret X., Broughton W. J., Rosenthal A. Sequencing the 500-kb GC-rich symbiotic replicon of Rhizobium sp. NGR234 using dye terminators and a thermostable "sequenase": a beginning. Genome Res. 1996 Jul;6(7):590–600. doi: 10.1101/gr.6.7.590. [DOI] [PubMed] [Google Scholar]
  17. Gibson T. J., Coulson A. R., Sulston J. E., Little P. F. Lorist2, a cosmid with transcriptional terminators insulating vector genes from interference by promoters within the insert: effect on DNA yield and cloned insert frequency. Gene. 1987;53(2-3):275–281. doi: 10.1016/0378-1119(87)90016-3. [DOI] [PubMed] [Google Scholar]
  18. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  19. Heron D. S., Pueppke S. G. Mode of infection, nodulation specificity, and indigenous plasmids of 11 fast-growing Rhizobium japonicum strains. J Bacteriol. 1984 Dec;160(3):1061–1066. doi: 10.1128/jb.160.3.1061-1066.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herridge D. F., Roughley R. J. Variation in colony characteristics and symbiotic effectiveness of Rhizobium. J Appl Bacteriol. 1975 Feb;38(1):19–27. doi: 10.1111/j.1365-2672.1975.tb00495.x. [DOI] [PubMed] [Google Scholar]
  21. Jouanin L., Tourneur J., Tourneur C., Casse-Delbart F. Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid. 1986 Sep;16(2):124–134. doi: 10.1016/0147-619x(86)90071-5. [DOI] [PubMed] [Google Scholar]
  22. Judd A. K., Sadowsky M. J. The Bradyrhizobium japonicum serocluster 123 hyperreiterated DNA region, HRS1, has DNA and amino acid sequence homology to IS1380, an insertion sequence from Acetobacter pasteurianus. Appl Environ Microbiol. 1993 May;59(5):1656–1661. doi: 10.1128/aem.59.5.1656-1661.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaluza K., Hahn M., Hennecke H. Repeated sequences similar to insertion elements clustered around the nif region of the Rhizobium japonicum genome. J Bacteriol. 1985 May;162(2):535–542. doi: 10.1128/jb.162.2.535-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keyser H. H., Bohlool B. B., Hu T. S., Weber D. F. Fast-growing rhizobia isolated from root nodules of soybean. Science. 1982 Mar 26;215(4540):1631–1632. doi: 10.1126/science.215.4540.1631. [DOI] [PubMed] [Google Scholar]
  25. Krishnan H. B., Pueppke S. G. Characterization of RFRS9, a second member of the Rhizobium fredii repetitive sequence family from the nitrogen-fixing symbiont R. fredii USDA257. Appl Environ Microbiol. 1993 Jan;59(1):150–155. doi: 10.1128/aem.59.1.150-155.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laberge S., Middleton A. T., Wheatcroft R. Characterization, nucleotide sequence, and conserved genomic locations of insertion sequence ISRm5 in Rhizobium meliloti. J Bacteriol. 1995 Jun;177(11):3133–3142. doi: 10.1128/jb.177.11.3133-3142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mazurier S. I., Rigottier-Gois L., Amarger N. Characterization, distribution, and localization of ISRl2, and insertion sequence element isolated from Rhizobium leguminosarum bv. viciae. Appl Environ Microbiol. 1996 Feb;62(2):685–693. doi: 10.1128/aem.62.2.685-693.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morrison N. A., Hau C. Y., Trinick M. J., Shine J., Rolfe B. G. Heat curing of a sym plasmid in a fast-growing Rhizobium sp. that is able to nodulate legumes and the nonlegume Parasponia sp. J Bacteriol. 1983 Jan;153(1):527–531. doi: 10.1128/jb.153.1.527-531.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Donnell M. J. Site of water vapor absorption in the desert cockroach, Arenivaga investigata. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1757–1760. doi: 10.1073/pnas.74.4.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ogawa J., Brierley H. L., Long S. R. Analysis of Rhizobium meliloti nodulation mutant WL131: novel insertion sequence ISRm3 in nodG and altered nodH protein product. J Bacteriol. 1991 May;173(10):3060–3065. doi: 10.1128/jb.173.10.3060-3065.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Osterås M., Stanley J., Finan T. M. Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol. 1995 Oct;177(19):5485–5494. doi: 10.1128/jb.177.19.5485-5494.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perret X., Broughton W. J., Brenner S. Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1923–1927. doi: 10.1073/pnas.88.5.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perret X., Fellay R., Bjourson A. J., Cooper J. E., Brenner S., Broughton W. J. Subtraction hybridisation and shot-gun sequencing: a new approach to identify symbiotic loci. Nucleic Acids Res. 1994 Apr 25;22(8):1335–1341. doi: 10.1093/nar/22.8.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Relić B., Perret X., Estrada-García M. T., Kopcinska J., Golinowski W., Krishnan H. B., Pueppke S. G., Broughton W. J. Nod factors of Rhizobium are a key to the legume door. Mol Microbiol. 1994 Jul;13(1):171–178. doi: 10.1111/j.1365-2958.1994.tb00412.x. [DOI] [PubMed] [Google Scholar]
  35. Romero D., Martínez-Salazar J., Girard L., Brom S., Dávilla G., Palacios R., Flores M., Rodríguez C. Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol. 1995 Feb;177(4):973–980. doi: 10.1128/jb.177.4.973-980.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenberg C., Boistard P., Dénarié J., Casse-Delbart F. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet. 1981;184(2):326–333. doi: 10.1007/BF00272926. [DOI] [PubMed] [Google Scholar]
  37. Ruvkun G. B., Long S. R., Meade H. M., van den Bos R. C., Ausubel F. M. ISRm1: A Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet. 1982;1(5):405–418. [PubMed] [Google Scholar]
  38. Sobral B. W., Honeycutt R. J., Atherly A. G., McClelland M. Electrophoretic separation of the three Rhizobium meliloti replicons. J Bacteriol. 1991 Aug;173(16):5173–5180. doi: 10.1128/jb.173.16.5173-5180.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Soto M. J., Zorzano A., Olivares J., Toro N. Sequence of ISRm4 from Rhizobium meliloti strain GR4. Gene. 1992 Oct 12;120(1):125–126. doi: 10.1016/0378-1119(92)90020-p. [DOI] [PubMed] [Google Scholar]
  40. Ulrich A., Pühler A. The new class II transposon Tn163 is plasmid-borne in two unrelated Rhizobium leguminosarum biovar viciae strains. Mol Gen Genet. 1994 Mar;242(5):505–516. doi: 10.1007/BF00285274. [DOI] [PubMed] [Google Scholar]
  41. Wheatcroft R., Laberge S. Identification and nucleotide sequence of Rhizobium meliloti insertion sequence ISRm3: similarity between the putative transposase encoded by ISRm3 and those encoded by Staphylococcus aureus IS256 and Thiobacillus ferrooxidans IST2. J Bacteriol. 1991 Apr;173(8):2530–2538. doi: 10.1128/jb.173.8.2530-2538.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wheatcroft R., Watson R. J. Distribution of insertion sequence ISRm1 in Rhizobium meliloti and other gram-negative bacteria. J Gen Microbiol. 1988 Jan;134(1):113–121. doi: 10.1099/00221287-134-1-113. [DOI] [PubMed] [Google Scholar]
  43. van Slooten J. C., Bhuvanasvari T. V., Bardin S., Stanley J. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):179–186. doi: 10.1094/mpmi-5-179. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES