Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7507–7514. doi: 10.1128/jb.179.23.7507-7514.1997

Escherichia coli cells expressing a mutant glyV (glycine tRNA) gene have a UVM-constitutive phenotype: implications for mechanisms underlying the mutA or mutC mutator effect.

H S Murphy 1, M Z Humayun 1
PMCID: PMC179703  PMID: 9393717

Abstract

Transfection of M13 single-stranded viral DNA bearing a 3,N4-ethenocytosine lesion into Escherichia coli cells pretreated with UV results in a significant elevation of mutagenesis at the lesion site compared to that observed in untreated cells. This response, termed UVM, for UV modulation of mutagenesis, is induced by a variety of DNA-damaging agents and is distinct from known cellular responses to DNA damage, including the SOS response. This report describes our observation, as a part of our investigation of the UVM phenomenon, that E. coli cells bearing a mutA or mutC allele display a UVM-constitutive phenotype. These mutator alleles were recently mapped (M. M. Slupska, C. Baikalov, R. Lloyd, and J. H. Miller, Proc. Natl. Acad. Sci. USA 93:4380-4385, 1996) to the glyV (mutA) and glyW (mutC) tRNA genes. Each mutant allele was shown to arise by an identical mutation in the anticodon sequence such that the mutant tRNAs could, in principle, mistranslate aspartate codons in mRNA as glycine at a low level. Because a UVM-constitutive phenotype resulting from a mutation in a tRNA gene was unexpected, we undertook a series of experiments designed to test whether the phenotype was indeed mediated by the expression of mutant glycine tRNAs. We placed either a wild-type or a mutant glyV gene under the control of a heterologous inducible promoter on a plasmid vector. E. coli cells expressing the mutant glyV gene displayed all three of the following phenotypes: (i) missense suppression of a test allele, (ii) a mutator phenotype measured by mutation to rifampin resistance, and (iii) a UVM-constitutive phenotype. These phenotypes were not associated with cells expressing the wild-type glyV gene or with cells in which the mutant allele was present but was not transcriptionally induced. These observations provide strong support for the idea that expression of mutant tRNA can confer a mutator phenotype, including the UVM-constitutive phenotype observed in mutA and mutC cells. However, our data imply that low-level mistranslation of the epsilon subunit of polymerase III probably does not account for the observed UVM-constitutive phenotype. Our results also indicate that mutA deltarecA double mutants display a normal UVM phenotype, suggesting that the mutA effect is recA dependent. The observations reported here raise a number of intriguing questions and raise the possibility that the UVM response is mediated through transient alteration of the replication environment.

Full Text

The Full Text of this article is available as a PDF (341.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann E., Ochs B., Abel K. J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988 Sep 30;69(2):301–315. doi: 10.1016/0378-1119(88)90440-4. [DOI] [PubMed] [Google Scholar]
  2. Barbin A., Bartsch H. Mutagenic and promutagenic properties of DNA adducts formed by vinyl chloride metabolites. IARC Sci Publ. 1986;(70):345–358. [PubMed] [Google Scholar]
  3. Blanco L., Bernad A., Salas M. Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases. Gene. 1992 Mar 1;112(1):139–144. doi: 10.1016/0378-1119(92)90316-h. [DOI] [PubMed] [Google Scholar]
  4. Brosius J. Superpolylinkers in cloning and expression vectors. DNA. 1989 Dec;8(10):759–777. doi: 10.1089/dna.1989.8.759. [DOI] [PubMed] [Google Scholar]
  5. Carbon J., Squires C., Hill C. W. Glycine transfer RNA of Escherichia coli. II. Impaired GGA-recognition in strains containing a genetically altered transfer RNA; reversal by a secondary suppressor mutation. J Mol Biol. 1970 Sep 28;52(3):571–584. doi: 10.1016/0022-2836(70)90420-1. [DOI] [PubMed] [Google Scholar]
  6. Chen H. J., Chung F. L. Formation of etheno adducts in reactions of enals via autoxidation. Chem Res Toxicol. 1994 Nov-Dec;7(6):857–860. doi: 10.1021/tx00042a021. [DOI] [PubMed] [Google Scholar]
  7. Cox E. C., Horner D. L. Structure and coding properties of a dominant Escherichia coli mutator gene, mutD. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2295–2299. doi: 10.1073/pnas.80.8.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Derbyshire V., Grindley N. D., Joyce C. M. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 1991 Jan;10(1):17–24. doi: 10.1002/j.1460-2075.1991.tb07916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Echols H., Lu C., Burgers P. M. Mutator strains of Escherichia coli, mutD and dnaQ, with defective exonucleolytic editing by DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2189–2192. doi: 10.1073/pnas.80.8.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fijalkowska I. J., Schaaper R. M. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2856–2861. doi: 10.1073/pnas.93.7.2856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higashitani N., Higashitani A., Horiuchi K. Nucleotide sequence of the primer RNA for DNA replication of filamentous bacteriophages. J Virol. 1993 Apr;67(4):2175–2181. doi: 10.1128/jvi.67.4.2175-2181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kelman Z., O'Donnell M. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem. 1995;64:171–200. doi: 10.1146/annurev.bi.64.070195.001131. [DOI] [PubMed] [Google Scholar]
  13. Leithauser M. T., Liem A., Stewart B. C., Miller E. C., Miller J. A. 1,N6-ethenoadenosine formation, mutagenicity and murine tumor induction as indicators of the generation of an electrophilic epoxide metabolite of the closely related carcinogens ethyl carbamate (urethane) and vinyl carbamate. Carcinogenesis. 1990 Mar;11(3):463–473. doi: 10.1093/carcin/11.3.463. [DOI] [PubMed] [Google Scholar]
  14. Michaels M. L., Cruz C., Miller J. H. mutA and mutC: two mutator loci in Escherichia coli that stimulate transversions. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9211–9215. doi: 10.1073/pnas.87.23.9211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murgola E. J., Prather N. E., Hadley K. H. Variations among glyV-derived glycine tRNA suppressors of glutamic acid codons. J Bacteriol. 1978 Jun;134(3):801–807. doi: 10.1128/jb.134.3.801-807.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murgola E. J. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. doi: 10.1146/annurev.ge.19.120185.000421. [DOI] [PubMed] [Google Scholar]
  17. Murphy H. S., Palejwala V. A., Rahman M. S., Dunman P. M., Wang G., Humayun M. Z. Role of mismatch repair in the Escherichia coli UVM response. J Bacteriol. 1996 Dec;178(23):6651–6657. doi: 10.1128/jb.178.23.6651-6657.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Normanly J., Ogden R. C., Horvath S. J., Abelson J. Changing the identity of a transfer RNA. Nature. 1986 May 15;321(6067):213–219. doi: 10.1038/321213a0. [DOI] [PubMed] [Google Scholar]
  19. Palejwala V. A., Pandya G. A., Bhanot O. S., Solomon J. J., Murphy H. S., Dunman P. M., Humayun M. Z. UVM, an ultraviolet-inducible RecA-independent mutagenic phenomenon in Escherichia coli. J Biol Chem. 1994 Nov 4;269(44):27433–27440. [PubMed] [Google Scholar]
  20. Palejwala V. A., Rzepka R. W., Humayun M. Z. UV irradiation of Escherichia coli modulates mutagenesis at a site-specific ethenocytosine residue on M13 DNA. Evidence for an inducible recA-independent effect. Biochemistry. 1993 Apr 20;32(15):4112–4120. doi: 10.1021/bi00066a037. [DOI] [PubMed] [Google Scholar]
  21. Palejwala V. A., Rzepka R. W., Simha D., Humayun M. Z. Quantitative multiplex sequence analysis of mutational hot spots. Frequency and specificity of mutations induced by a site-specific ethenocytosine in M13 viral DNA. Biochemistry. 1993 Apr 20;32(15):4105–4111. doi: 10.1021/bi00066a036. [DOI] [PubMed] [Google Scholar]
  22. Palejwala V. A., Simha D., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion. Biochemistry. 1991 Sep 10;30(36):8736–8743. doi: 10.1021/bi00100a004. [DOI] [PubMed] [Google Scholar]
  23. Palejwala V. A., Wang G. E., Murphy H. S., Humayun M. Z. Functional recA, lexA, umuD, umuC, polA, and polB genes are not required for the Escherichia coli UVM response. J Bacteriol. 1995 Nov;177(21):6041–6048. doi: 10.1128/jb.177.21.6041-6048.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simha D., Palejwala V. A., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Construction and in vitro template characteristics of an oligonucleotide bearing a single site-specific ethenocytosine. Biochemistry. 1991 Sep 10;30(36):8727–8735. doi: 10.1021/bi00100a003. [DOI] [PubMed] [Google Scholar]
  25. Slater S. C., Lifsics M. R., O'Donnell M., Maurer R. holE, the gene coding for the theta subunit of DNA polymerase III of Escherichia coli: characterization of a holE mutant and comparison with a dnaQ (epsilon-subunit) mutant. J Bacteriol. 1994 Feb;176(3):815–821. doi: 10.1128/jb.176.3.815-821.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Slupska M. M., Baikalov C., Lloyd R., Miller J. H. Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4380–4385. doi: 10.1073/pnas.93.9.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Squires C., Carbon J. Normal and mutant glycine transfer RNAs. Nat New Biol. 1971 Oct 27;233(43):274–277. doi: 10.1038/newbio233274a0. [DOI] [PubMed] [Google Scholar]
  28. Wang G., Humayun M. Z. Induction of the Escherichia coli UVM response by oxidative stress. Mol Gen Genet. 1996 Jul 19;251(5):573–579. doi: 10.1007/BF02173647. [DOI] [PubMed] [Google Scholar]
  29. Wang G., Palejwala V. A., Dunman P. M., Aviv D. H., Murphy H. S., Rahman M. S., Humayun M. Z. Alkylating agents induce UVM, a recA-independent inducible mutagenic phenomenon in Escherichia coli. Genetics. 1995 Nov;141(3):813–823. doi: 10.1093/genetics/141.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES