Abstract
In the present study, we demonstrate that the terminal inverted repeats of the Escherichia coli insertion sequence IS30 are functional target sites for the transposition of the (IS30)2 dimer, which represents an intermediate structure in the transposition of IS30. Comparative analysis of various target regions revealed that the left and right ends differ in their "attractivity." In our experiments, the joined left and right ends, i.e., the (IS30)2 intermediate structure, was found to be the most preferred target. It was also shown that flanking sequences can influence the target activity of the terminal repeats. The functional part of the target region was localized in the inverted repeats by means of mutational analysis, and it corresponds to the binding site of IS30 transposase. Insertion of 1 bp into the right inverted repeat resulted in unusual target duplication accompanied by gene conversion. The choice of the terminal inverted repeats as targets in transposition leads to the reconstruction of the (IS30)2 structure, which may induce a cascade of further rearrangements. Therefore, this process can play a role in the evolution of the genome.
Full Text
The Full Text of this article is available as a PDF (215.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bossi L., Ciampi M. S. DNA sequences at the sites of three insertions of the transposable element Tn5 in the histidine operon of Salmonella. Mol Gen Genet. 1981;183(2):406–408. doi: 10.1007/BF00270649. [DOI] [PubMed] [Google Scholar]
- Caspers P., Dalrymple B., Iida S., Arber W. IS30, a new insertion sequence of Escherichia coli K12. Mol Gen Genet. 1984;196(1):68–73. doi: 10.1007/BF00334094. [DOI] [PubMed] [Google Scholar]
- Dalrymple B., Caspers P., Arber W. Nucleotide sequence of the prokaryotic mobile genetic element IS30. EMBO J. 1984 Sep;3(9):2145–2149. doi: 10.1002/j.1460-2075.1984.tb02104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalrymple B. Novel rearrangements of IS30 carrying plasmids leading to the reactivation of gene expression. Mol Gen Genet. 1987 May;207(2-3):413–420. doi: 10.1007/BF00331609. [DOI] [PubMed] [Google Scholar]
- Dente L., Cesareni G., Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;11(6):1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engler J. A., van Bree M. P. The nucleotide sequence and protein-coding capability of the transposable element IS5. Gene. 1981 Aug;14(3):155–163. doi: 10.1016/0378-1119(81)90111-6. [DOI] [PubMed] [Google Scholar]
- Farkas T., Kiss J., Olasz F. The construction and characterization of an effective transpositional system based on IS30. FEBS Lett. 1996 Jul 15;390(1):53–58. doi: 10.1016/0014-5793(96)00626-6. [DOI] [PubMed] [Google Scholar]
- Foster T. J. Insertion of the tetracycline resistance translocation unit Tn10 in the lac operon of Escherichia coli K12. Mol Gen Genet. 1977 Sep 9;154(3):305–309. doi: 10.1007/BF00571287. [DOI] [PubMed] [Google Scholar]
- Galas D. J., Calos M. P., Miller J. H. Sequence analysis of Tn9 insertions in the lacZ gene. J Mol Biol. 1980 Nov 25;144(1):19–41. doi: 10.1016/0022-2836(80)90213-2. [DOI] [PubMed] [Google Scholar]
- Halling S. M., Kleckner N. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell. 1982 Jan;28(1):155–163. doi: 10.1016/0092-8674(82)90385-3. [DOI] [PubMed] [Google Scholar]
- Lupski J. R., Gershon P., Ozaki L. S., Godson G. N. Specificity of Tn5 insertions into a 36-bp DNA sequence repeated in tandem seven times. Gene. 1984 Oct;30(1-3):99–106. doi: 10.1016/0378-1119(84)90109-4. [DOI] [PubMed] [Google Scholar]
- Mayaux J. F., Springer M., Graffe M., Fromant M., Fayat G. IS4 transposition in the attenuator region of the Escherichia coli pheS,T operon. Gene. 1984 Oct;30(1-3):137–146. doi: 10.1016/0378-1119(84)90114-8. [DOI] [PubMed] [Google Scholar]
- Mollet B., Iida S., Arber W. Gene organization and target specificity of the prokaryotic mobile genetic element IS26. Mol Gen Genet. 1985;201(2):198–203. doi: 10.1007/BF00425660. [DOI] [PubMed] [Google Scholar]
- Naas T., Blot M., Fitch W. M., Arber W. Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics. 1994 Mar;136(3):721–730. doi: 10.1093/genetics/136.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olasz F., Stalder R., Arber W. Formation of the tandem repeat (IS30)2 and its role in IS30-mediated transpositional DNA rearrangements. Mol Gen Genet. 1993 May;239(1-2):177–187. doi: 10.1007/BF00281616. [DOI] [PubMed] [Google Scholar]
- Polard P., Prère M. F., Fayet O., Chandler M. Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J. 1992 Dec;11(13):5079–5090. doi: 10.1002/j.1460-2075.1992.tb05615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prère M. F., Chandler M., Fayet O. Transposition in Shigella dysenteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. J Bacteriol. 1990 Jul;172(7):4090–4099. doi: 10.1128/jb.172.7.4090-4099.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reimmann C., Haas D. Mode of replicon fusion mediated by the duplicated insertion sequence IS21 in Escherichia coli. Genetics. 1987 Apr;115(4):619–625. doi: 10.1093/genetics/115.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reimmann C., Haas D. The istA gene of insertion sequence IS21 is essential for cleavage at the inner 3' ends of tandemly repeated IS21 elements in vitro. EMBO J. 1990 Dec;9(12):4055–4063. doi: 10.1002/j.1460-2075.1990.tb07627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reimmann C., Moore R., Little S., Savioz A., Willetts N. S., Haas D. Genetic structure, function and regulation of the transposable element IS21. Mol Gen Genet. 1989 Feb;215(3):416–424. doi: 10.1007/BF00427038. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekine Y., Eisaki N., Ohtsubo E. Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol. 1994 Feb 4;235(5):1406–1420. doi: 10.1006/jmbi.1994.1097. [DOI] [PubMed] [Google Scholar]
- Stalder R., Caspers P., Olasz F., Arber W. The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element. J Biol Chem. 1990 Mar 5;265(7):3757–3762. [PubMed] [Google Scholar]
- Szeverényi I., Bodoky T., Olasz F. Isolation, characterization and transposition of an (IS2)2 intermediate. Mol Gen Genet. 1996 Jun 12;251(3):281–289. doi: 10.1007/BF02172518. [DOI] [PubMed] [Google Scholar]
- Tu C. P., Cohen S. N. Translocation specificity of the Tn3 element: characterization of sites of multiple insertions. Cell. 1980 Jan;19(1):151–160. doi: 10.1016/0092-8674(80)90396-7. [DOI] [PubMed] [Google Scholar]
- Turlan C., Chandler M. IS1-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J. 1995 Nov 1;14(21):5410–5421. doi: 10.1002/j.1460-2075.1995.tb00225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]