Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(23):7606–7609. doi: 10.1128/jb.179.23.7606-7609.1997

Functional domains of a zinc metalloprotease from Vibrio vulnificus.

S Miyoshi 1, H Wakae 1, K Tomochika 1, S Shinoda 1
PMCID: PMC179719  PMID: 9393733

Abstract

Vibrio vulnificus, an opportunistic human pathogen causing wound infection and septicemia, secretes a 45-kDa metalloprotease (V. vulnificus protease; VVP). A plasmid which carries the entire vvp gene subcloned into pBluescriptIIKS+ was transformed into Escherichia coli DH5alpha for overproduction of the protease. The 45-kDa recombinant protease (rVVP) was isolated from the periplasmic fraction of the transformant by ammonium sulfate precipitation followed by column chromatography on phenyl Sepharose. Biochemical characterization of the isolated rVVP showed that the recombinant protease was identical to that produced by V. vulnificus. When rVVP was incubated at 37 degrees C, a 35-kDa fragment was generated through autoproteolytic removal of the C-terminal peptide. This 35-kDa fragment (rVVP-N) was found to have sufficient proteolytic activity toward oligopeptides and soluble proteins but had markedly reduced activity toward insoluble proteins. Lineweaver-Burk plot analysis indicated increased Km values of rVVP-N for all of the protein substrates. rVVP, but not rVVP-N, was shown to agglutinate rabbit erythrocytes, bind to the erythrocyte ghosts, and digest the ghost membrane proteins. These results strongly suggest that rVVP (and VVP) consists of at least two functional domains: an N-terminal 35-kDa polypeptide mediating proteolysis and a C-terminal 10-kDa polypeptide which may be essential for efficient attachment to protein substrates and erythrocyte membranes.

Full Text

The Full Text of this article is available as a PDF (316.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam M., Miyoshi S., Shinoda S. Production of antigenically related exocellular elastolytic proteases mediating hemagglutination by vibrios. Microbiol Immunol. 1995;39(1):67–70. doi: 10.1111/j.1348-0421.1995.tb02170.x. [DOI] [PubMed] [Google Scholar]
  2. Beaumont A., O'Donohue M. J., Paredes N., Rousselet N., Assicot M., Bohuon C., Fournié-Zaluski M. C., Roques B. P. The role of histidine 231 in thermolysin-like enzymes. A site-directed mutagenesis study. J Biol Chem. 1995 Jul 14;270(28):16803–16808. doi: 10.1074/jbc.270.28.16803. [DOI] [PubMed] [Google Scholar]
  3. Cheng J. C., Shao C. P., Hor L. I. Cloning and nucleotide sequencing of the protease gene of Vibrio vulnificus. Gene. 1996 Dec 12;183(1-2):255–257. doi: 10.1016/s0378-1119(96)00488-x. [DOI] [PubMed] [Google Scholar]
  4. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  5. Häse C. C., Finkelstein R. A. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev. 1993 Dec;57(4):823–837. doi: 10.1128/mr.57.4.823-837.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Häse C. C., Finkelstein R. A. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol. 1991 Jun;173(11):3311–3317. doi: 10.1128/jb.173.11.3311-3317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janda J. M., Powers C., Bryant R. G., Abbott S. L. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev. 1988 Jul;1(3):245–267. doi: 10.1128/cmr.1.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kessler E., Safrin M. Synthesis, processing, and transport of Pseudomonas aeruginosa elastase. J Bacteriol. 1988 Nov;170(11):5241–5247. doi: 10.1128/jb.170.11.5241-5247.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kessler E., Safrin M. The propeptide of Pseudomonas aeruginosa elastase acts an elastase inhibitor. J Biol Chem. 1994 Sep 9;269(36):22726–22731. [PubMed] [Google Scholar]
  10. Kothary M. H., Kreger A. S. Purification and characterization of an elastolytic protease of Vibrio vulnificus. J Gen Microbiol. 1987 Jul;133(7):1783–1791. doi: 10.1099/00221287-133-7-1783. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. McIver K. S., Kessler E., Olson J. C., Ohman D. E. The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol. 1995 Dec;18(5):877–889. doi: 10.1111/j.1365-2958.1995.18050877.x. [DOI] [PubMed] [Google Scholar]
  13. McIver K., Kessler E., Ohman D. E. Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol. 1991 Dec;173(24):7781–7789. doi: 10.1128/jb.173.24.7781-7789.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milton D. L., Norqvist A., Wolf-Watz H. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol. 1992 Nov;174(22):7235–7244. doi: 10.1128/jb.174.22.7235-7244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyoshi N., Shimizu C., Miyoshi S., Shinoda S. Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol. 1987;31(1):13–25. doi: 10.1111/j.1348-0421.1987.tb03064.x. [DOI] [PubMed] [Google Scholar]
  16. Miyoshi S., Shinoda S. Alpha-macroglobulin-like plasma inactivator for Vibrio vulnificus metalloprotease. J Biochem. 1991 Oct;110(4):548–552. doi: 10.1093/oxfordjournals.jbchem.a123617. [DOI] [PubMed] [Google Scholar]
  17. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  18. O'Donohue M. J., Beaumont A. The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro. J Biol Chem. 1996 Oct 25;271(43):26477–26481. doi: 10.1074/jbc.271.43.26477. [DOI] [PubMed] [Google Scholar]
  19. Tacket C. O., Brenner F., Blake P. A. Clinical features and an epidemiological study of Vibrio vulnificus infections. J Infect Dis. 1984 Apr;149(4):558–561. doi: 10.1093/infdis/149.4.558. [DOI] [PubMed] [Google Scholar]
  20. Tomoda A., Kodaira K., Taketo A., Tanimoto K., Yoneyama Y. Isolation of human erythrocyte membranes in glucose solution. Anal Biochem. 1984 Aug 1;140(2):386–390. doi: 10.1016/0003-2697(84)90182-9. [DOI] [PubMed] [Google Scholar]
  21. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. doi: 10.1111/j.1365-2958.1989.tb00169.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES