Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7611–7616. doi: 10.1128/jb.179.24.7611-7616.1997

Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae.

K Athenstaedt 1, G Daum 1
PMCID: PMC179720  PMID: 9401016

Abstract

Lipid particles of the yeast Saccharomyces cerevisiae harbor two enzymes that stepwise acylate glycerol-3-phosphate to phosphatidic acid, a key intermediate in lipid biosynthesis. In lipid particles of the s1c1 disruptant YMN5 (M. M. Nagiec et al., J. Biol. Chem. 268:22156-22163, 1993) acylation stops after the first step, resulting in the accumulation of lysophosphatidic acid. Two-dimensional gel electrophoresis confirmed that S1c1p is a component of lipid particles. Lipid particles of a second mutant strain, TTA1 (T. S. Tillman and R. M. Bell, J. Biol. Chem. 261:9144-9149, 1986), which harbors a point mutation in the GAT gene, are essentially devoid of glycerol-3-phosphate acyltransferase activity in vitro. Synthesis of phosphatidic acid is reconstituted by combining lipid particles from YMN5 and TTA1. These results indicate that two distinct enzymes are necessary for phosphatidic acid synthesis in lipid particles: the first step, acylation of glycerol-3-phosphate, is catalyzed by a putative Gat1p; the second step, acylation of lysophosphatidic acid, requires S1c1p. Surprisingly, YMN5 and TTA1 mutants grow like the corresponding wild types because the endoplasmic reticulum of both mutants has the capacity to form a reduced but significant amount of phosphatidic acid. As a consequence, an s1c1 gat1 double mutant is also viable. Lipid particles from this double mutant fail completely to acylate glycerol-3-phosphate, whereas endoplasmic reticulum membranes harbor residual enzyme activities to synthesize phosphatidic acid. Thus, yeast contains at least two independent systems of phosphatidic acid biosynthesis.

Full Text

The Full Text of this article is available as a PDF (588.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop W. R., Bell R. M. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Annu Rev Cell Biol. 1988;4:579–610. doi: 10.1146/annurev.cb.04.110188.003051. [DOI] [PubMed] [Google Scholar]
  2. Christiansen K. Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta. 1978 Jul 25;530(1):78–90. doi: 10.1016/0005-2760(78)90128-5. [DOI] [PubMed] [Google Scholar]
  3. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  4. Frentzen M., Neuburger M., Joyard J., Douce R. Intraorganelle localization and substrate specificities of the mitochondrial acyl-CoA: sn-glycerol-3-phosphate O-acyltransferase and acyl-CoA: 1-acyl-sn-glycerol-3-phosphate O-acyltransferase from potato tubers and pea leaves. Eur J Biochem. 1990 Jan 26;187(2):395–402. doi: 10.1111/j.1432-1033.1990.tb15317.x. [DOI] [PubMed] [Google Scholar]
  5. Haid A., Suissa M. Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:192–205. doi: 10.1016/s0076-6879(83)96017-2. [DOI] [PubMed] [Google Scholar]
  6. Haldar D., Tso W. W., Pullman M. E. The acylation of sn-glycerol 3-phosphate in mammalian organs and Ehrlich ascites tumor cells. J Biol Chem. 1979 Jun 10;254(11):4502–4509. [PubMed] [Google Scholar]
  7. Kelley M. J., Carman G. M. Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae. J Biol Chem. 1987 Oct 25;262(30):14563–14570. [PubMed] [Google Scholar]
  8. Kuchler K., Daum G., Paltauf F. Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J Bacteriol. 1986 Mar;165(3):901–910. doi: 10.1128/jb.165.3.901-910.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Leber R., Zinser E., Zellnig G., Paltauf F., Daum G. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast. 1994 Nov;10(11):1421–1428. doi: 10.1002/yea.320101105. [DOI] [PubMed] [Google Scholar]
  12. Minskoff S. A., Racenis P. V., Granger J., Larkins L., Hajra A. K., Greenberg M. L. Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. J Lipid Res. 1994 Dec;35(12):2254–2262. [PubMed] [Google Scholar]
  13. Morlock K. R., McLaughlin J. J., Lin Y. P., Carman G. M. Phosphatidate phosphatase from Saccharomyces cerevisiae. Isolation of 45- and 104-kDa forms of the enzyme that are differentially regulated by inositol. J Biol Chem. 1991 Feb 25;266(6):3586–3593. [PubMed] [Google Scholar]
  14. Nagiec M. M., Wells G. B., Lester R. L., Dickson R. C. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem. 1993 Oct 15;268(29):22156–22163. [PubMed] [Google Scholar]
  15. Quinlan J. J., Nickels J. T., Jr, Wu W. I., Lin Y. P., Broach J. R., Carman G. M. The 45- and 104-kDa forms of phosphatidate phosphatase from Saccharomyces cerevisiae are regulated differentially by phosphorylation via cAMP-dependent protein kinase. J Biol Chem. 1992 Sep 5;267(25):18013–18020. [PubMed] [Google Scholar]
  16. Racenis P. V., Lai J. L., Das A. K., Mullick P. C., Hajra A. K., Greenberg M. L. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae. J Bacteriol. 1992 Sep;174(17):5702–5710. doi: 10.1128/jb.174.17.5702-5710.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schlossman D. M., Bell R. M. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities. J Bacteriol. 1978 Mar;133(3):1368–1376. doi: 10.1128/jb.133.3.1368-1376.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shen H., Heacock P. N., Clancey C. J., Dowhan W. The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. J Biol Chem. 1996 Jan 12;271(2):789–795. doi: 10.1074/jbc.271.2.789. [DOI] [PubMed] [Google Scholar]
  19. Shin D. H., Paulauskis J. D., Moustaïd N., Sul H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J Biol Chem. 1991 Dec 15;266(35):23834–23839. [PubMed] [Google Scholar]
  20. Tillman T. S., Bell R. M. Mutants of Saccharomyces cerevisiae defective in sn-glycerol-3-phosphate acyltransferase. Simultaneous loss of dihydroxyacetone phosphate acyltransferase indicates a common gene. J Biol Chem. 1986 Jul 15;261(20):9144–9149. [PubMed] [Google Scholar]
  21. Vancura A., Haldar D. Purification and characterization of glycerophosphate acyltransferase from rat liver mitochondria. J Biol Chem. 1994 Nov 4;269(44):27209–27215. [PubMed] [Google Scholar]
  22. Zinser E., Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995 May;11(6):493–536. doi: 10.1002/yea.320110602. [DOI] [PubMed] [Google Scholar]
  23. Zinser E., Sperka-Gottlieb C. D., Fasch E. V., Kohlwein S. D., Paltauf F., Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991 Mar;173(6):2026–2034. doi: 10.1128/jb.173.6.2026-2034.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES