Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7671–7678. doi: 10.1128/jb.179.24.7671-7678.1997

Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli.

J R van der Ploeg 1, R Iwanicka-Nowicka 1, M A Kertesz 1, T Leisinger 1, M M Hryniewicz 1
PMCID: PMC179728  PMID: 9401024

Abstract

Starvation for sulfate results in increased synthesis of several proteins in Escherichia coli. Among these Ssi (sulfate starvation-induced) proteins are the products of the tauABCD genes, which are required for utilization of taurine as sulfur source for growth. In this study, the role of the cbl gene in expression of tauABCD and other ssi genes was investigated. The protein encoded by cbl shows high sequence similarity to CysB, the LysR-type transcriptional activator of the genes involved in cysteine biosynthesis. Strain EC2541, which contains an internal deletion in cbl, was unable to utilize taurine and other aliphatic sulfonates as sulfur sources. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that many of the Ssi proteins were not synthesized in EC2541. Expression of a translational tauD'-'lacZ fusion required the presence of both cbl and cysB. The interactions of CysB and Cbl with the promoter region of tauABCD were studied by using gel mobility shift experiments and DNase I footprinting. CysB occupied multiple binding sites, whereas Cbl occupied only one site from 112 to 68 bp upstream of the transcription start site. Acetylserine, the inducer of transcription of CysB-regulated genes, stimulated binding of CysB but not of Cbl. Sulfate had no effect on binding of both proteins to the tauABCD promoter region. These results indicate that Cbl is a transcription factor for genes required for sulfonate-sulfur utilization and maybe for other genes whose expression is induced by sulfate starvation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belitsky B. R., Sonenshein A. L. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. J Bacteriol. 1997 Feb;179(4):1035–1043. doi: 10.1128/jb.179.4.1035-1043.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
  3. Chen P., Ailion M., Weyand N., Roth J. The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole. J Bacteriol. 1995 Mar;177(6):1461–1469. doi: 10.1128/jb.177.6.1461-1469.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colyer T. E., Kredich N. M. Residue threonine-149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Mol Microbiol. 1994 Sep;13(5):797–805. doi: 10.1111/j.1365-2958.1994.tb00472.x. [DOI] [PubMed] [Google Scholar]
  5. Eichhorn E., van der Ploeg J. R., Kertesz M. A., Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997 Sep 12;272(37):23031–23036. doi: 10.1074/jbc.272.37.23031. [DOI] [PubMed] [Google Scholar]
  6. Everett M., Walsh T., Guay G., Bennett P. GcvA, a LysR-type transcriptional regulator protein, activates expression of the cloned Citrobacter freundii ampC beta-lactamase gene in Escherichia coli: cross-talk between DNA-binding proteins. Microbiology. 1995 Feb;141(Pt 2):419–430. doi: 10.1099/13500872-141-2-419. [DOI] [PubMed] [Google Scholar]
  7. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garner M. M., Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul 10;9(13):3047–3060. doi: 10.1093/nar/9.13.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hochstrasser D. F., Harrington M. G., Hochstrasser A. C., Miller M. J., Merril C. R. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem. 1988 Sep;173(2):424–435. doi: 10.1016/0003-2697(88)90209-6. [DOI] [PubMed] [Google Scholar]
  11. Hryniewicz M. M., Kredich N. M. Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium. J Bacteriol. 1995 May;177(9):2343–2353. doi: 10.1128/jb.177.9.2343-2353.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hryniewicz M. M., Kredich N. M. Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol. 1994 Jun;176(12):3673–3682. doi: 10.1128/jb.176.12.3673-3682.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hryniewicz M. M., Kredich N. M. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol. 1991 Sep;173(18):5876–5886. doi: 10.1128/jb.173.18.5876-5886.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwanicka-Nowicka R., Hryniewicz M. M. A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene. 1995 Dec 1;166(1):11–17. doi: 10.1016/0378-1119(95)00606-8. [DOI] [PubMed] [Google Scholar]
  15. Jagura-Burdzy G., Hulanicka D. Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon. J Bacteriol. 1981 Sep;147(3):744–751. doi: 10.1128/jb.147.3.744-751.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jennings M. P., Beacham I. R. Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol. 1993 Jul;9(1):155–164. doi: 10.1111/j.1365-2958.1993.tb01677.x. [DOI] [PubMed] [Google Scholar]
  17. Kertesz M. A., Cook A. M., Leisinger T. Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol Rev. 1994 Oct;15(2-3):195–215. doi: 10.1111/j.1574-6976.1994.tb00135.x. [DOI] [PubMed] [Google Scholar]
  18. Kertesz M. A., Leisinger T., Cook A. M. Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J Bacteriol. 1993 Feb;175(4):1187–1190. doi: 10.1128/jb.175.4.1187-1190.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed] [Google Scholar]
  20. Kredich N. M. The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol. 1992 Oct;6(19):2747–2753. doi: 10.1111/j.1365-2958.1992.tb01453.x. [DOI] [PubMed] [Google Scholar]
  21. Miller B. E., Kredich N. M. Purification of the cysB protein from Salmonella typhimurium. J Biol Chem. 1987 May 5;262(13):6006–6009. [PubMed] [Google Scholar]
  22. Ostrowski J., Jagura-Burdzy G., Kredich N. M. DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J Biol Chem. 1987 May 5;262(13):5999–6005. [PubMed] [Google Scholar]
  23. Ostrowski J., Kredich N. M. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine. J Bacteriol. 1989 Jan;171(1):130–140. doi: 10.1128/jb.171.1.130-140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parsek M. R., McFall S. M., Shinabarger D. L., Chakrabarty A. M. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12393–12397. doi: 10.1073/pnas.91.26.12393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quadroni M., Staudenmann W., Kertesz M., James P. Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur J Biochem. 1996 Aug 1;239(3):773–781. doi: 10.1111/j.1432-1033.1996.0773u.x. [DOI] [PubMed] [Google Scholar]
  26. Richet E., Vidal-Ingigliardi D., Raibaud O. A new mechanism for coactivation of transcription initiation: repositioning of an activator triggered by the binding of a second activator. Cell. 1991 Sep 20;66(6):1185–1195. doi: 10.1016/0092-8674(91)90041-v. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
  29. Tyrrell R., Davies G. J., Wilson K. S., Wilkinson A. J. Crystallization of a DNA and N-acetylserine binding fragment (residues 1 to 233) of Klebsiella aerogenes CysB protein, a member of the LysR family. J Mol Biol. 1994 Jan 21;235(3):1159–1161. doi: 10.1006/jmbi.1994.1069. [DOI] [PubMed] [Google Scholar]
  30. Uria-Nickelsen M. R., Leadbetter E. R., Godchaux W., 3rd Sulphonate utilization by enteric bacteria. J Gen Microbiol. 1993 Feb;139(2):203–208. doi: 10.1099/00221287-139-2-203. [DOI] [PubMed] [Google Scholar]
  31. van der Ploeg J. R., Weiss M. A., Saller E., Nashimoto H., Saito N., Kertesz M. A., Leisinger T. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol. 1996 Sep;178(18):5438–5446. doi: 10.1128/jb.178.18.5438-5446.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. von Lintig J., Kreusch D., Schröder J. Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens. J Bacteriol. 1994 Jan;176(2):495–503. doi: 10.1128/jb.176.2.495-503.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES