Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7712–7717. doi: 10.1128/jb.179.24.7712-7717.1997

Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila.

M E Rasche 1, K S Smith 1, J G Ferry 1
PMCID: PMC179733  PMID: 9401029

Abstract

Phosphotransacetylase catalyzes the following reaction: CoASH + CH3CO2PO3(2-) <==> CH3COSCoA + HPO4(2-) (where CoA is coenzyme A). Based on biochemical characterization of the enzyme from the obligate anaerobe Clostridium kluyveri, a ternary mechanism was proposed in which an unspecified cysteine abstracts a proton from CoASH forming a nucleophilic thiolate anion which attacks acetyl phosphate (J. Henkin and R. H. Abeles, Biochemistry 15:3472-3479, 1976). Heterologous production in Escherichia coli of the phosphotransacetylase from Methanosarcina thermophila, an obligately anaerobic methanoarchaeon, allowed site-specific replacements to identify essential residues. All four cysteines present in the sequence were individually replaced with alanine, and the kinetic constants of the altered enzymes were determined. The results indicated that only C159 is essential for activity; however, replacement with serine resulted in a fully active enzyme. Activity of the unaltered phosphotransacetylase was sensitive to N-ethylmaleimide. Inhibition kinetics of altered enzymes indicated that this sensitivity resulted from modification of C312, which is at the active site but itself is nonessential for catalysis. Five arginines were individually replaced with glutamine. Kinetic analysis of the altered enzymes identified R310 as essential for activity. Of the four nonessential for activity, R87 and R133 appear to be involved in binding CoA.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Boynton Z. L., Bennett G. N., Rudolph F. B. Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 1996 Aug;62(8):2758–2766. doi: 10.1128/aem.62.8.2758-2766.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheon H. G., Hanna P. E. Effect of group-selective modification reagents on arylamine N-acetyltransferase activities. Biochem Pharmacol. 1992 May 28;43(10):2255–2268. doi: 10.1016/0006-2952(92)90185-l. [DOI] [PubMed] [Google Scholar]
  4. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  5. Glaser P., Kunst F., Arnaud M., Coudart M. P., Gonzales W., Hullo M. F., Ionescu M., Lubochinsky B., Marcelino L., Moszer I. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol. 1993 Oct;10(2):371–384. [PubMed] [Google Scholar]
  6. Gupta R. S., Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994 Dec 1;4(12):1104–1114. doi: 10.1016/s0960-9822(00)00249-9. [DOI] [PubMed] [Google Scholar]
  7. Henkin J., Abeles R. H. Evidence against an acyl-enzyme intermediate in the reaction catalyzed by clostridial phosphotransacetylase. Biochemistry. 1976 Aug 10;15(16):3472–3479. doi: 10.1021/bi00661a012. [DOI] [PubMed] [Google Scholar]
  8. Kakuda H., Hosono K., Shiroishi K., Ichihara S. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J Biochem. 1994 Oct;116(4):916–922. doi: 10.1093/oxfordjournals.jbchem.a124616. [DOI] [PubMed] [Google Scholar]
  9. Kim E. J., Zhen R. G., Rea P. A. Site-directed mutagenesis of vacuolar H(+)-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem. 1995 Feb 10;270(6):2630–2635. doi: 10.1074/jbc.270.6.2630. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  11. Latimer M. T., Ferry J. G. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J Bacteriol. 1993 Nov;175(21):6822–6829. doi: 10.1128/jb.175.21.6822-6829.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lundie L. L., Jr, Ferry J. G. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem. 1989 Nov 5;264(31):18392–18396. [PubMed] [Google Scholar]
  13. Matsuyama A., Yamamoto-Otake H., Hewitt J., MacGillivray R. T., Nakano E. Nucleotide sequence of the phosphotransacetylase gene of Escherichia coli strain K12. Biochim Biophys Acta. 1994 Oct 18;1219(2):559–562. doi: 10.1016/0167-4781(94)90089-2. [DOI] [PubMed] [Google Scholar]
  14. Maupin-Furlow J. A., Ferry J. G. Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J Bacteriol. 1996 Dec;178(23):6849–6856. doi: 10.1128/jb.178.23.6849-6856.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maupin-Furlow J., Ferry J. G. Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol. 1996 Jan;178(2):340–346. doi: 10.1128/jb.178.2.340-346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perrière G., Gouy M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie. 1996;78(5):364–369. doi: 10.1016/0300-9084(96)84768-7. [DOI] [PubMed] [Google Scholar]
  17. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol. 1993 Aug;175(15):4772–4779. doi: 10.1128/jb.175.15.4772-4779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Remington S., Wiegand G., Huber R. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol. 1982 Jun 15;158(1):111–152. doi: 10.1016/0022-2836(82)90452-1. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schröder I., Gunsalus R. P., Ackrell B. A., Cochran B., Cecchini G. Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J Biol Chem. 1991 Jul 25;266(21):13572–13579. [PubMed] [Google Scholar]
  21. Shanmugasundaram T., Kumar G. K., Shenoy B. C., Wood H. G. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry. 1989 Aug 22;28(17):7112–7116. doi: 10.1021/bi00443a049. [DOI] [PubMed] [Google Scholar]
  22. Taddei N., Stefani M., Vecchi M., Modesti A., Raugei G., Bucciantini M., Magherini F., Ramponi G. Arginine-23 is involved in the catalytic site of muscle acylphosphatase. Biochim Biophys Acta. 1994 Sep 21;1208(1):75–80. doi: 10.1016/0167-4838(94)90161-9. [DOI] [PubMed] [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang X. G., Engel P. C. Identification of the reactive cysteine in clostridial glutamate dehydrogenase by site-directed mutagenesis and proof that this residue is not strictly essential. Protein Eng. 1994 Aug;7(8):1013–1016. doi: 10.1093/protein/7.8.1013. [DOI] [PubMed] [Google Scholar]
  25. Wong S. S., Wong L. J. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase. Biochim Biophys Acta. 1981 Jul 24;660(1):142–147. doi: 10.1016/0005-2744(81)90119-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES