Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7718–7723. doi: 10.1128/jb.179.24.7718-7723.1997

Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea.

N Raffaelli 1, F M Pisani 1, T Lorenzi 1, M Emanuelli 1, A Amici 1, S Ruggieri 1, G Magni 1
PMCID: PMC179734  PMID: 9401030

Abstract

The enzyme nicotinamide mononucleotide (NMN) adenylyltransferase (EC 2.7.7.1) catalyzes the synthesis of NAD+ and nicotinic acid adenine dinucleotide. It has been purified to homogeneity from cellular extracts of the thermophilic archaeon Sulfolobus solfataricus. Through a database search, a highly significant match was found between its N-terminal sequence and a hypothetical protein coded by the thermophilic archaeon Methanococcus jannaschii MJ0541 open reading frame (GenBank accession no. U67503). The MJ0541 gene was isolated, cloned into a T7-based vector, and expressed in Escherichia coli cells, yielding a high level of thermophilic NMN adenylyltransferase activity. The expressed protein was purified to homogeneity by a single-step chromatographic procedure. Both the subunit molecular mass and the N-terminal sequence of the pure recombinant protein were as expected from the deduced amino acid sequence of the MJ0541 open reading frame-encoded protein. Molecular and kinetic properties of the enzymes from both archaea are reported and compared with those already known for the mesophilic eukaryotic NMN adenylyltransferase.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balducci E., Orsomando G., Polzonetti V., Vita A., Emanuelli M., Raffaelli N., Ruggieri S., Magni G., Natalini P. NMN adenylyltransferase from bull testis: purification and properties. Biochem J. 1995 Sep 1;310(Pt 2):395–400. doi: 10.1042/bj3100395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
  5. D'Auria S., La Cara F., Nazzaro F., Vespa N., Rossi M. A thermophilic alcohol dehydrogenase from Bacillus acidocaldarius not reactive towards ketones. J Biochem. 1996 Sep;120(3):498–504. doi: 10.1093/oxfordjournals.jbchem.a021441. [DOI] [PubMed] [Google Scholar]
  6. Dahmen W., Webb B., Preiss J. The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast. Arch Biochem Biophys. 1967 May;120(2):440–450. doi: 10.1016/0003-9861(67)90262-7. [DOI] [PubMed] [Google Scholar]
  7. Denicola-Seoane A., Anderson B. M. Studies of NAD kinase and NMN:ATP adenylyltransferase in Haemophilus influenzae. J Gen Microbiol. 1990 Mar;136(3):425–430. doi: 10.1099/00221287-136-3-425. [DOI] [PubMed] [Google Scholar]
  8. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  9. Emanuelli M., Natalini P., Raffaelli N., Ruggieri S., Vita A., Magni G. NAD biosynthesis in human placenta: purification and characterization of homogeneous NMN adenylyltransferase. Arch Biochem Biophys. 1992 Oct;298(1):29–34. doi: 10.1016/0003-9861(92)90089-f. [DOI] [PubMed] [Google Scholar]
  10. Foster J. W., Moat A. G. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev. 1980 Mar;44(1):83–105. doi: 10.1128/mr.44.1.83-105.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenbaum A. L., Pinder S. Changes in the activities of enzymes of the biosynthetic pathway of the nicotinamide nucleotides in rat mammary gland during the lactation cycle. Biochem J. 1968 Mar;107(1):63–67. doi: 10.1042/bj1070063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOGEBOOM G. H., SCHNEIDER W. C. Cytochemical studies. VI. The synthesis of diphosphopyridine nucleotide by liver cell nuclei. J Biol Chem. 1952 May;197(2):611–620. [PubMed] [Google Scholar]
  13. Hughes K. T., Ladika D., Roth J. R., Olivera B. M. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J Bacteriol. 1983 Jul;155(1):213–221. doi: 10.1128/jb.155.1.213-221.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaneko T., Tanaka A., Sato S., Kotani H., Sazuka T., Miyajima N., Sugiura M., Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 1995 Aug 31;2(4):153-66, 191-8. doi: 10.1093/dnares/2.4.153. [DOI] [PubMed] [Google Scholar]
  15. Kristjansson M. M., Kinsella J. E. Alkaline serine proteinase from Thermomonospora fusca YX. Stability to heat and denaturants. Biochem J. 1990 Aug 15;270(1):51–55. doi: 10.1042/bj2700051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. MORTON R. K. Enzymic synthesis of coenzyme I in relation to chemical control of cell growth. Nature. 1958 Feb 22;181(4608):540–542. doi: 10.1038/181540a0. [DOI] [PubMed] [Google Scholar]
  18. Ma K., Linder D., Stetter K. O., Thauer R. K. Purification and properties of N5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri. Arch Microbiol. 1991;155(6):593–600. doi: 10.1007/BF00245355. [DOI] [PubMed] [Google Scholar]
  19. Ma K., Zirngibl C., Linder D., Stetter K. O., Thauer R. K. N5, N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming) from the extreme thermophile Methanopyrus kandleri. Arch Microbiol. 1991;156(1):43–48. doi: 10.1007/BF00418186. [DOI] [PubMed] [Google Scholar]
  20. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  21. Pisani F. M., Rella R., Raia C. A., Rozzo C., Nucci R., Gambacorta A., De Rosa M., Rossi M. Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur J Biochem. 1990 Jan 26;187(2):321–328. doi: 10.1111/j.1432-1033.1990.tb15308.x. [DOI] [PubMed] [Google Scholar]
  22. Raffaelli N., Amici A., Emanuelli M., Ruggieri S., Magni G. Pyridine dinucleotide biosynthesis in archaebacteria: presence of NMN adenylyltransferase in Sulfolobus solfataricus. FEBS Lett. 1994 Dec 5;355(3):233–236. doi: 10.1016/0014-5793(94)01195-8. [DOI] [PubMed] [Google Scholar]
  23. Ruggieri S., Gregori L., Natalini P., Vita A., Emanuelli M., Raffaelli N., Magni G. Evidence for an inhibitory effect exerted by yeast NMN adenylyltransferase on poly(ADP-ribose) polymerase activity. Biochemistry. 1990 Mar 13;29(10):2501–2506. doi: 10.1021/bi00462a010. [DOI] [PubMed] [Google Scholar]
  24. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  25. Solao P. B., Shall S. Control of DNA replication in Physarum polycephalum. I. Specific activity of NAD pyrophosphorylase in isolated nuclei during the cell cycle. Exp Cell Res. 1971 Dec;69(2):295–300. doi: 10.1016/0014-4827(71)90227-8. [DOI] [PubMed] [Google Scholar]
  26. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  27. Uhr M. L., Smulson M. NMN adenylyltransferase: its association with chromatin and with poly(ADP-ribose) polymerase. Eur J Biochem. 1982 Nov 15;128(2-3):435–443. doi: 10.1111/j.1432-1033.1982.tb06983.x. [DOI] [PubMed] [Google Scholar]
  28. Villa A., Zecca L., Fusi P., Colombo S., Tedeschi G., Tortora P. Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus. Biochem J. 1993 Nov 1;295(Pt 3):827–831. doi: 10.1042/bj2950827. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES