Abstract
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.
Full Text
The Full Text of this article is available as a PDF (461.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin J. C., Kuliopulos A., Mildvan A. S., Spiro T. G. Substrate polarization by residues in delta 5-3-ketosteroid isomerase probed by site-directed mutagenesis and UV resonance Raman spectroscopy. Protein Sci. 1992 Feb;1(2):259–270. doi: 10.1002/pro.5560010208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Austin J. C., Zhao Q., Jordan T., Talalay P., Mildvan A. S., Spiro T. G. Ultraviolet resonance Raman spectroscopy of delta 5-3-ketosteroid isomerase revisited: substrate polarization by active-site residues. Biochemistry. 1995 Apr 4;34(13):4441–4447. doi: 10.1021/bi00013a037. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brooks B., Benisek W. F. Mechanism of the reaction catalyzed by delta 5-3-ketosteroid isomerase of Comamonas (Pseudomonas) testosteroni: kinetic properties of a modified enzyme in which tyrosine 14 is replaced by 3-fluorotyrosine. Biochemistry. 1994 Mar 8;33(9):2682–2687. doi: 10.1021/bi00175a042. [DOI] [PubMed] [Google Scholar]
- Choi K. Y., Benisek W. F. Cloning of the gene for delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni. Gene. 1987;58(2-3):257–264. doi: 10.1016/0378-1119(87)90380-5. [DOI] [PubMed] [Google Scholar]
- Collier H. B. Letter: A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate. Anal Biochem. 1973 Nov;56(1):310–311. doi: 10.1016/0003-2697(73)90196-6. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Gerlt J. A., Gassman P. G. Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry. 1993 Nov 16;32(45):11943–11952. doi: 10.1021/bi00096a001. [DOI] [PubMed] [Google Scholar]
- Holman C. M., Benisek W. F. Extent of proton transfer in the transition states of the reaction catalyzed by the delta 5-3-ketosteroid isomerase of Comamonas (Pseudomonas) testosteroni: site-specific replacement of the active site base, aspartate 38, by the weaker base alanine-3-sulfinate. Biochemistry. 1994 Mar 8;33(9):2672–2681. doi: 10.1021/bi00175a041. [DOI] [PubMed] [Google Scholar]
- Holman C. M., Benisek W. F. Insights into the catalytic mechanism and active-site environment of Comamonas testosteroni delta 5-3-ketosteroid isomerase as revealed by site-directed mutagenesis of the catalytic base aspartate-38. Biochemistry. 1995 Oct 31;34(43):14245–14253. doi: 10.1021/bi00043a032. [DOI] [PubMed] [Google Scholar]
- Kim S. W., Choi K. Y. Identification of active site residues by site-directed mutagenesis of delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol. 1995 May;177(9):2602–2605. doi: 10.1128/jb.177.9.2602-2605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. W., Kim C. Y., Benisek W. F., Choi K. Y. Cloning, nucleotide sequence, and overexpression of the gene coding for delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol. 1994 Nov;176(21):6672–6676. doi: 10.1128/jb.176.21.6672-6676.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuliopulos A., Mildvan A. S., Shortle D., Talalay P. Kinetic and ultraviolet spectroscopic studies of active-site mutants of delta 5-3-ketosteroid isomerase. Biochemistry. 1989 Jan 10;28(1):149–159. doi: 10.1021/bi00427a022. [DOI] [PubMed] [Google Scholar]
- Kuliopulos A., Westbrook E. M., Talalay P., Mildvan A. S. Positioning of a spin-labeled substrate analogue into the structure of delta 5-3-ketosteroid isomerase by combined kinetic, magnetic resonance, and X-ray diffraction methods. Biochemistry. 1987 Jun 30;26(13):3927–3937. doi: 10.1021/bi00387a028. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Linden K. G., Benisek W. F. The amino acid sequence of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. J Biol Chem. 1986 May 15;261(14):6454–6460. [PubMed] [Google Scholar]
- Oh B. H., Kim S. W., Ryu S. E., Kim S. S., Yoon M. K., Choi K. Y. Crystallization and preliminary x-ray crystallographic studies of ketosteroid isomerase from Pseudomonas putida biotype B. Proteins. 1996 Apr;24(4):514–515. doi: 10.1002/(SICI)1097-0134(199604)24:4<514::AID-PROT10>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. B., Benisek W. F. Active site-directed photoinactivation of delta 5-3-ketosteroid isomerase from Pseudomonas putida dependent on 1,4,6-androstatrien-3-one-17 beta-ol. J Biol Chem. 1980 Apr 10;255(7):2690–2693. [PubMed] [Google Scholar]
- Westbrook E. M., Piro O. E., Sigler P. B. The 6-A crystal structure of delta 5-3-ketosteroid isomerase. Architecture and location of the active center. J Biol Chem. 1984 Jul 25;259(14):9096–9103. [PubMed] [Google Scholar]
- Wu Z. R., Ebrahimian S., Zawrotny M. E., Thornburg L. D., Perez-Alvarado G. C., Brothers P., Pollack R. M., Summers M. F. Solution structure of 3-oxo-delta5-steroid isomerase. Science. 1997 Apr 18;276(5311):415–418. doi: 10.1126/science.276.5311.415. [DOI] [PubMed] [Google Scholar]
- Xue L. A., Kuliopulos A., Mildvan A. S., Talalay P. Catalytic mechanism of an active-site mutant (D38N) of delta 5-3-ketosteroid isomerase. Direct spectroscopic evidence for dienol intermediates. Biochemistry. 1991 May 21;30(20):4991–4997. doi: 10.1021/bi00234a022. [DOI] [PubMed] [Google Scholar]
- Xue L. A., Talalay P., Mildvan A. S. Studies of the catalytic mechanism of an active-site mutant (Y14F) of delta 5-3-ketosteroid isomerase by kinetic deuterium isotope effects. Biochemistry. 1991 Nov 12;30(45):10858–10865. doi: 10.1021/bi00109a008. [DOI] [PubMed] [Google Scholar]
- Zhao Q., Abeygunawardana C., Mildvan A. S. NMR studies of the secondary structure in solution and the steroid binding site of delta5-3-ketosteroid isomerase in complexes with diamagnetic and paramagnetic steroids. Biochemistry. 1997 Mar 25;36(12):3458–3472. doi: 10.1021/bi962844u. [DOI] [PubMed] [Google Scholar]
- Zhao Q., Abeygunawardana C., Talalay P., Mildvan A. S. NMR evidence for the participation of a low-barrier hydrogen bond in the mechanism of delta 5-3-ketosteroid isomerase. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8220–8224. doi: 10.1073/pnas.93.16.8220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Q., Li Y. K., Mildvan A. S., Talalay P. Ultraviolet spectroscopic evidence for decreased motion of the active site tyrosine residue of delta 5-3-ketosteroid isomerase by steroid binding. Biochemistry. 1995 May 16;34(19):6562–6572. doi: 10.1021/bi00019a038. [DOI] [PubMed] [Google Scholar]
- Zhao Q., Mildvan A. S., Talalay P. Enzymatic and nonenzymatic polarizations of alpha,beta-unsaturated ketosteroids and phenolic steroids. Implications for the roles of hydrogen bonding in the catalytic mechanism of delta 5-3-ketosteroid isomerase. Biochemistry. 1995 Jan 17;34(2):426–434. doi: 10.1021/bi00002a006. [DOI] [PubMed] [Google Scholar]