Abstract
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.
Full Text
The Full Text of this article is available as a PDF (672.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Binks P. R., French C. E., Nicklin S., Bruce N. C. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol. 1996 Apr;62(4):1214–1219. doi: 10.1128/aem.62.4.1214-1219.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloves J. M., Dodgson K. S., White G. F., Fitzgerald J. W. Purification and properties of the P2 primary alkylsulphohydrolase of the detergent-degrading bacterium pseudomonas C12B. Biochem J. 1980 Jan 1;185(1):23–31. doi: 10.1042/bj1850023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ducrocq C., Servy C., Lenfant M. Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett. 1989 Nov;53(1-2):219–222. doi: 10.1016/0378-1097(89)90394-7. [DOI] [PubMed] [Google Scholar]
- Ducrocq C., Servy C., Lenfant M. Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem. 1990 Jun;12(3):325–330. [PubMed] [Google Scholar]
- Fox K. M., Karplus P. A. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure. 1994 Nov 15;2(11):1089–1105. [PubMed] [Google Scholar]
- Franklund C. V., Baron S. F., Hylemon P. B. Characterization of the baiH gene encoding a bile acid-inducible NADH:flavin oxidoreductase from Eubacterium sp. strain VPI 12708. J Bacteriol. 1993 May;175(10):3002–3012. doi: 10.1128/jb.175.10.3002-3012.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- French C. E., Bruce N. C. Bacterial morphinone reductase is related to Old Yellow Enzyme. Biochem J. 1995 Dec 15;312(Pt 3):671–678. doi: 10.1042/bj3120671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- French C. E., Bruce N. C. Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem J. 1994 Jul 1;301(Pt 1):97–103. doi: 10.1042/bj3010097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- French C. E., Nicklin S., Bruce N. C. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol. 1996 Nov;178(22):6623–6627. doi: 10.1128/jb.178.22.6623-6627.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lautenschlager E. P., Marshall G. W., Marshall S. J., Hutton J. E., Greener E. H. Properties of a commercial non-precious casting alloy. Quintessence Int Dent Dig. 1974 Nov;5(11):81–83. [PubMed] [Google Scholar]
- Mallonee D. H., White W. B., Hylemon P. B. Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708. J Bacteriol. 1990 Dec;172(12):7011–7019. doi: 10.1128/jb.172.12.7011-7019.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matts P. J., White G. F., Payne W. J. Purification and characterization of the short-chain alkylsulphatase of coryneform B1a. Biochem J. 1994 Dec 15;304(Pt 3):937–943. doi: 10.1042/bj3040937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng M., Sun W. Q., Geelhaar L. A., Kumar G., Patel A. R., Payne G. F., Speedie M. K., Stacy J. R. Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans. Appl Environ Microbiol. 1995 Jul;61(7):2548–2553. doi: 10.1128/aem.61.7.2548-2553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda M., Ramírez J., Guevara S., Ongay-Larios L., Peña A., Coria R. Nucleotide sequence and chromosomal localization of the gene encoding the Old Yellow Enzyme from Kluyveromyces lactis. Yeast. 1995 Apr 30;11(5):459–465. doi: 10.1002/yea.320110509. [DOI] [PubMed] [Google Scholar]
- Miura K., Tomioka Y., Suzuki H., Yonezawa M., Hishinuma T., Mizugaki M. Molecular cloning of the nemA gene encoding N-ethylmaleimide reductase from Escherichia coli. Biol Pharm Bull. 1997 Jan;20(1):110–112. doi: 10.1248/bpb.20.110. [DOI] [PubMed] [Google Scholar]
- Niino Y. S., Chakraborty S., Brown B. J., Massey V. A new old yellow enzyme of Saccharomyces cerevisiae. J Biol Chem. 1995 Feb 3;270(5):1983–1991. doi: 10.1074/jbc.270.5.1983. [DOI] [PubMed] [Google Scholar]
- San Francisco M. J., Hope C. L., Owolabi J. B., Tisa L. S., Rosen B. P. Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 1990 Feb 11;18(3):619–624. doi: 10.1093/nar/18.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
- Scrutton N. S. alpha/beta barrel evolution and the modular assembly of enzymes: emerging trends in the flavin oxidase/dehydrogenase family. Bioessays. 1994 Feb;16(2):115–122. doi: 10.1002/bies.950160208. [DOI] [PubMed] [Google Scholar]
- Servent D., Ducrocq C., Henry Y., Guissani A., Lenfant M. Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophys Acta. 1991 Jul 8;1074(2):320–325. doi: 10.1016/0304-4165(91)90170-l. [DOI] [PubMed] [Google Scholar]
- Servent D., Ducrocq C., Henry Y., Servy C., Lenfant M. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Appl Biochem. 1992 Jun;15(3):257–266. [PubMed] [Google Scholar]
- Shaw D. J., Dodgson K. S., White G. F. Substrate specificity and other properties of the inducible S3 secondary alkylsulphohydrolase purified from the detergent-degrading bacterium Pseudomonas C12B. Biochem J. 1980 Apr 1;187(1):181–190. doi: 10.1042/bj1870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wendt T. M., Cornell J. H., Kaplan A. M. Microbial degradation of glycerol nitrates. Appl Environ Microbiol. 1978 Nov;36(5):693–699. doi: 10.1128/aem.36.5.693-699.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White G. F., Snape J. R. Microbial cleavage of nitrate esters: defusing the environment. J Gen Microbiol. 1993 Sep;139(9):1947–1957. doi: 10.1099/00221287-139-9-1947. [DOI] [PubMed] [Google Scholar]
- White G. F., Snape J. R., Nicklin S. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol. 1996 Feb;62(2):637–642. doi: 10.1128/aem.62.2.637-642.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
