Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7816–7826. doi: 10.1128/jb.179.24.7816-7826.1997

bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator.

L Servín-González 1, C Castro 1, C Pérez 1, M Rubio 1, F Valdez 1
PMCID: PMC179747  PMID: 9401043

Abstract

Extracellular lipase synthesis by Streptomyces lividans 66 carrying the cloned lipase gene (lipA) from Streptomyces exfoliatus M11 was found to be growth phase dependent, since lipase was secreted into the medium mainly during the stationary phase; S1 nuclease protection experiments revealed abundant lipA transcripts in RNA preparations obtained during the stationary phase but not in those obtained during exponential growth. Transcription from the lipA promoter was dependent on the presence of lipR, a contiguous downstream gene with a very high guanine-plus-cytosine content (80.2%). The deduced lipR product consists of a protein of 934 amino acids that shows similarity to known transcriptional activators and has a strong helix-turn-helix motif at its C terminus; this motif is part of a domain homologous to DNA-binding domains of bacterial regulators of the UhpA/LuxR superfamily. The lipR sequence revealed the presence of a leucine residue, encoded by the rare TTA codon, which caused bldA dependence of lipA transcription in Streptomyces coelicolor A3(2); replacement of the TTA codon by the alternate CTC leucine codon alleviated bidA dependence but not the apparent growth phase-dependent regulation of lipA transcription. When lipR expression was induced in a controlled fashion during the exponential growth phase, by placing it under the inducible tipA promoter, lipase synthesis was shifted to the exponential growth phase, indicating that the timing of lipR expression, and not its bldA dependence, is the main cause for stationary-phase transcription of lipA.

Full Text

The Full Text of this article is available as a PDF (990.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bibb M. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology. 1996 Jun;142(Pt 6):1335–1344. doi: 10.1099/13500872-142-6-1335. [DOI] [PubMed] [Google Scholar]
  4. Buttner M J, Fearnley I M, Bibb M J. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet. 1987 Aug;209(1):101–109. doi: 10.1007/BF00329843. [DOI] [PubMed] [Google Scholar]
  5. Chater K. F. Genetics of differentiation in Streptomyces. Annu Rev Microbiol. 1993;47:685–713. doi: 10.1146/annurev.mi.47.100193.003345. [DOI] [PubMed] [Google Scholar]
  6. Cole S. T., Raibaud O. The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene. 1986;42(2):201–208. doi: 10.1016/0378-1119(86)90297-0. [DOI] [PubMed] [Google Scholar]
  7. Cruz H., Pérez C., Wellington E., Castro C., Servín-González L. Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. Gene. 1994 Jun 24;144(1):141–142. doi: 10.1016/0378-1119(94)90220-8. [DOI] [PubMed] [Google Scholar]
  8. Dodd I. B., Egan J. B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 1990 Sep 11;18(17):5019–5026. doi: 10.1093/nar/18.17.5019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feller G., Thiry M., Gerday C. Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144. Nucleic Acids Res. 1990 Nov 11;18(21):6431–6431. doi: 10.1093/nar/18.21.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell. 1991 Aug 23;66(4):769–780. doi: 10.1016/0092-8674(91)90120-n. [DOI] [PubMed] [Google Scholar]
  11. Floriano B., Bibb M. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol. 1996 Jul;21(2):385–396. doi: 10.1046/j.1365-2958.1996.6491364.x. [DOI] [PubMed] [Google Scholar]
  12. Fujii T., Gramajo H. C., Takano E., Bibb M. J. redD and actII-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD. J Bacteriol. 1996 Jun;178(11):3402–3405. doi: 10.1128/jb.178.11.3402-3405.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuqua W. C., Winans S. C., Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269–275. doi: 10.1128/jb.176.2.269-275.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gramajo H. C., Takano E., Bibb M. J. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol. 1993 Mar;7(6):837–845. doi: 10.1111/j.1365-2958.1993.tb01174.x. [DOI] [PubMed] [Google Scholar]
  15. Hart M. E., Smeltzer M. S., Iandolo J. J. The extracellular protein regulator (xpr) affects exoprotein and agr mRNA levels in Staphylococcus aureus. J Bacteriol. 1993 Dec;175(24):7875–7879. doi: 10.1128/jb.175.24.7875-7879.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hattori K., Adachi H., Matsuzawa A., Yamamoto K., Tsujimoto M., Aoki J., Hattori M., Arai H., Inoue K. cDNA cloning and expression of intracellular platelet-activating factor (PAF) acetylhydrolase II. Its homology with plasma PAF acetylhydrolase. J Biol Chem. 1996 Dec 20;271(51):33032–33038. doi: 10.1074/jbc.271.51.33032. [DOI] [PubMed] [Google Scholar]
  17. Holmes D. J., Caso J. L., Thompson C. J. Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans. EMBO J. 1993 Aug;12(8):3183–3191. doi: 10.1002/j.1460-2075.1993.tb05987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. [DOI] [PubMed] [Google Scholar]
  19. Jaeger K. E., Ransac S., Dijkstra B. W., Colson C., van Heuvel M., Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994 Sep;15(1):29–63. doi: 10.1111/j.1574-6976.1994.tb00121.x. [DOI] [PubMed] [Google Scholar]
  20. Janssen G. R., Bibb M. J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993 Feb 14;124(1):133–134. doi: 10.1016/0378-1119(93)90774-w. [DOI] [PubMed] [Google Scholar]
  21. Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
  22. Kok R. G., Nudel C. B., Gonzalez R. H., Nugteren-Roodzant I. M., Hellingwerf K. J. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA. J Bacteriol. 1996 Oct;178(20):6025–6035. doi: 10.1128/jb.178.20.6025-6035.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kouker G., Jaeger K. E. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol. 1987 Jan;53(1):211–213. doi: 10.1128/aem.53.1.211-213.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lawlor E. J., Baylis H. A., Chater K. F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1987 Dec;1(10):1305–1310. doi: 10.1101/gad.1.10.1305. [DOI] [PubMed] [Google Scholar]
  26. Leskiw B. K., Bibb M. J., Chater K. F. The use of a rare codon specifically during development? Mol Microbiol. 1991 Dec;5(12):2861–2867. doi: 10.1111/j.1365-2958.1991.tb01845.x. [DOI] [PubMed] [Google Scholar]
  27. Leskiw B. K., Lawlor E. J., Fernandez-Abalos J. M., Chater K. F. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2461–2465. doi: 10.1073/pnas.88.6.2461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lydiate D. J., Malpartida F., Hopwood D. A. The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene. 1985;35(3):223–235. doi: 10.1016/0378-1119(85)90001-0. [DOI] [PubMed] [Google Scholar]
  29. Murakami T., Holt T. G., Thompson C. J. Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol. 1989 Mar;171(3):1459–1466. doi: 10.1128/jb.171.3.1459-1466.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murray M. G. Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem. 1986 Oct;158(1):165–170. doi: 10.1016/0003-2697(86)90605-6. [DOI] [PubMed] [Google Scholar]
  31. Olukoshi E. R., Packter N. M. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology. 1994 Apr;140(Pt 4):931–943. doi: 10.1099/00221287-140-4-931. [DOI] [PubMed] [Google Scholar]
  32. Packter N. M., Olukoshi E. R. Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch Microbiol. 1995 Dec;164(6):420–427. doi: 10.1007/BF02529740. [DOI] [PubMed] [Google Scholar]
  33. Pao G. M., Saier M. H., Jr Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol. 1995 Feb;40(2):136–154. doi: 10.1007/BF00167109. [DOI] [PubMed] [Google Scholar]
  34. Peng H. L., Yang Y. H., Deng W. L., Chang H. Y. Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon. J Bacteriol. 1997 Mar;179(5):1497–1504. doi: 10.1128/jb.179.5.1497-1504.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pérez C., Juárez K., García-Castells E., Soberón G., Servín-González L. Cloning, characterization, and expression in Streptomyces lividans 66 of an extracellular lipase-encoding gene from Streptomyces sp. M11. Gene. 1993 Jan 15;123(1):109–114. doi: 10.1016/0378-1119(93)90548-h. [DOI] [PubMed] [Google Scholar]
  36. Quinn D. M., Shirai K., Jackson R. L., Harmony J. A. Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apolipoprotein C-II. Biochemistry. 1982 Dec 21;21(26):6872–6879. doi: 10.1021/bi00269a038. [DOI] [PubMed] [Google Scholar]
  37. Richet E., Raibaud O. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 1989 Mar;8(3):981–987. doi: 10.1002/j.1460-2075.1989.tb03461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Servín-González L. Identification and properties of a novel clt locus in the Streptomyces phaeochromogenes plasmid pJV1. J Bacteriol. 1996 Jul;178(14):4323–4326. doi: 10.1128/jb.178.14.4323-4326.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Servín-González L., Jensen M. R., White J., Bibb M. Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiology. 1994 Oct;140(Pt 10):2555–2565. doi: 10.1099/00221287-140-10-2555. [DOI] [PubMed] [Google Scholar]
  40. Servín-González L., Sampieri A. I., Cabello J., Galván L., Juárez V., Castro C. Sequence and functional analysis of the Streptomyces phaeochromogenes plasmid pJV1 reveals a modular organization of Streptomyces plasmids that replicate by rolling circle. Microbiology. 1995 Oct;141(Pt 10):2499–2510. doi: 10.1099/13500872-141-10-2499. [DOI] [PubMed] [Google Scholar]
  41. Smeltzer M. S., Gill S. R., Iandolo J. J. Localization of a chromosomal mutation affecting expression of extracellular lipase in Staphylococcus aureus. J Bacteriol. 1992 Jun;174(12):4000–4006. doi: 10.1128/jb.174.12.4000-4006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Summerton J., Atkins T., Bestwick R. A rapid method for preparation of bacterial plasmids. Anal Biochem. 1983 Aug;133(1):79–84. doi: 10.1016/0003-2697(83)90224-5. [DOI] [PubMed] [Google Scholar]
  43. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol. 1992 Oct;6(19):2797–2804. doi: 10.1111/j.1365-2958.1992.tb01459.x. [DOI] [PubMed] [Google Scholar]
  44. Takano E., White J., Thompson C. J., Bibb M. J. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene. 1995 Dec 1;166(1):133–137. doi: 10.1016/0378-1119(95)00545-2. [DOI] [PubMed] [Google Scholar]
  45. Vidal-Ingigliardi D., Richet E., Danot O., Raibaud O. A small C-terminal region of the Escherichia coli MalT protein contains the DNA-binding domain. J Biol Chem. 1993 Nov 25;268(33):24527–24530. [PubMed] [Google Scholar]
  46. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet. 1986 Jun;203(3):468–478. doi: 10.1007/BF00422072. [DOI] [PubMed] [Google Scholar]
  47. White J., Bibb M. bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol. 1997 Feb;179(3):627–633. doi: 10.1128/jb.179.3.627-633.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  49. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES