Abstract
A bacteriophage infection mutant (strain LIMP7) of Mycobacterium smegmatis was isolated following transposon mutagenesis. The mutant showed an unusual phenotype, in that all phages tested produced larger plaques on this strain compared to the parent strain. Other phenotypic characteristics of the mutant were slower growth, increased clumping in liquid culture, increased resistance to chloramphenicol and erythromycin, and increased sensitivity to isoniazid and several beta-lactam antibiotics. Permeability studies showed decreases in the accumulation of lipophilic molecules (norfloxacin and chenodeoxycholate) and a small increase with hydrophilic molecules (cephaloridine); taken together, these characteristics indicate an altered cell envelope. The DNA adjacent to the transposon in LIMP7 was cloned and was shown to be highly similar to genes encoding bacterial and mammalian inositol monophosphate phosphatases. Inositol is important in mycobacteria as a component of the major thiol mycothiol and also in the cell wall, with phosphatidylinositol anchoring lipoarabinomannan (LAM) in the cell envelope. In LIMP7, levels of phosphatidylinositol dimannoside, the precursor of LAM, were less than half of those in the wild-type strain, confirming that the mutation had affected the synthesis of inositol-containing molecules. The impA gene is located within the histidine biosynthesis operon in both M. smegmatis and Mycobacterium tuberculosis, lying between the hisA and hisF genes.
Full Text
The Full Text of this article is available as a PDF (306.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alifano P., Fani R., Liò P., Lazcano A., Bazzicalupo M., Carlomagno M. S., Bruni C. B. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev. 1996 Mar;60(1):44–69. doi: 10.1128/mr.60.1.44-69.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- BROCKERHOFF H. BREAKDOWN OF PHOSPHOLIPIDS IN MILD ALKALINE HYDROLYSIS. J Lipid Res. 1963 Jan;4:96–99. [PubMed] [Google Scholar]
- Bansal V. S., Majerus P. W. Phosphatidylinositol-derived precursors and signals. Annu Rev Cell Biol. 1990;6:41–67. doi: 10.1146/annurev.cb.06.110190.000353. [DOI] [PubMed] [Google Scholar]
- Bergh S., Cole S. T. MycDB: an integrated mycobacterial database. Mol Microbiol. 1994 May;12(4):517–534. doi: 10.1111/j.1365-2958.1994.tb01039.x. [DOI] [PubMed] [Google Scholar]
- Besra G. S., Khoo K. H., Belisle J. T., McNeil M. R., Morris H. R., Dell A., Brennan P. J. New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria. Carbohydr Res. 1994 Jan 3;251:99–114. doi: 10.1016/0008-6215(94)84279-5. [DOI] [PubMed] [Google Scholar]
- Bone R., Springer J. P., Atack J. R. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10031–10035. doi: 10.1073/pnas.89.21.10031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman B. U., Jr, Fisher L. J., Witiak D. T., Newman H. A. Inactivation of phages DS6A and D29 by acetone extracts of Mycobacterium tuberculosis and Mycobacterium bovis. Am Rev Respir Dis. 1975 Jul;112(1):17–22. doi: 10.1164/arrd.1975.112.1.17. [DOI] [PubMed] [Google Scholar]
- Chambers H. F., Moreau D., Yajko D., Miick C., Wagner C., Hackbarth C., Kocagöz S., Rosenberg E., Hadley W. K., Nikaido H. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 1995 Dec;39(12):2620–2624. doi: 10.1128/aac.39.12.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhariwal K. R., Liav A., Vatter A. E., Dhariwal G., Goren M. B. Haptenic oligosaccharides in antigenic variants of mycobacterial C-mycosides antagonize lipid receptor activity for mycobacteriophage D4 by masking a methylated rhamnose. J Bacteriol. 1986 Oct;168(1):283–293. doi: 10.1128/jb.168.1.283-293.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg F., Jr D-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem. 1967 Apr 10;242(7):1375–1382. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fitzgerald G., Williams L. S. Modified penicillin enrichment procedure for the selection of bacterial mutants. J Bacteriol. 1975 Apr;122(1):345–346. doi: 10.1128/jb.122.1.345-346.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilhot C., Otal I., Van Rompaey I., Martìn C., Gicquel B. Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol. 1994 Jan;176(2):535–539. doi: 10.1128/jb.176.2.535-539.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinshelwood S., Stoker N. G. Cloning of mycobacterial histidine synthesis genes by complementation of a Mycobacterium smegmatis auxotroph. Mol Microbiol. 1992 Oct;6(19):2887–2895. doi: 10.1111/j.1365-2958.1992.tb01468.x. [DOI] [PubMed] [Google Scholar]
- Holland K. T., Ratledge C. A procedure for selecting and isolating specific auxotrophic mutants of Mycobacterium smegmatis. J Gen Microbiol. 1971 Apr;66(1):115–118. doi: 10.1099/00221287-66-1-115. [DOI] [PubMed] [Google Scholar]
- Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem. 1995 May 26;270(21):12380–12389. doi: 10.1074/jbc.270.21.12380. [DOI] [PubMed] [Google Scholar]
- Kozloff L. M., Turner M. A., Arellano F., Lute M. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J Bacteriol. 1991 Mar;173(6):2053–2060. doi: 10.1128/jb.173.6.2053-2060.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee R. E., Brennan P. J., Besra G. S. Mycobacterium tuberculosis cell envelope. Curr Top Microbiol Immunol. 1996;215:1–27. doi: 10.1007/978-3-642-80166-2_1. [DOI] [PubMed] [Google Scholar]
- Liu J., Barry C. E., 3rd, Besra G. S., Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem. 1996 Nov 22;271(47):29545–29551. doi: 10.1074/jbc.271.47.29545. [DOI] [PubMed] [Google Scholar]
- Liu J., Takiff H. E., Nikaido H. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol. 1996 Jul;178(13):3791–3795. doi: 10.1128/jb.178.13.3791-3795.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuhisa A., Suzuki N., Noda T., Shiba K. Inositol monophosphatase activity from the Escherichia coli suhB gene product. J Bacteriol. 1995 Jan;177(1):200–205. doi: 10.1128/jb.177.1.200-205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuwald A. F., York J. D., Majerus P. W. Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 1991 Dec 2;294(1-2):16–18. doi: 10.1016/0014-5793(91)81332-3. [DOI] [PubMed] [Google Scholar]
- Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol. 1996 Apr;178(7):1990–1995. doi: 10.1128/jb.178.7.1990-1995.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton G. L., Bewley C. A., Dwyer T. J., Horn R., Aharonowitz Y., Cohen G., Davies J., Faulkner D. J., Fahey R. C. The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem. 1995 Jun 1;230(2):821–825. doi: 10.1111/j.1432-1033.1995.0821h.x. [DOI] [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- PAULUS H., KENNEDY E. P. The enzymatic synthesis of inositol monophosphatide. J Biol Chem. 1960 May;235:1303–1311. [PubMed] [Google Scholar]
- Redmond W. B., Ward D. M. Media and methods for phage-typing mycobacteria. Bull World Health Organ. 1966;35(4):563–568. [PMC free article] [PubMed] [Google Scholar]
- Rysavy F. R., Bishop M. J., Gibbs G. P., Williams G. W. The UK Human Genome Mapping Project online computing service. Comput Appl Biosci. 1992 Apr;8(2):149–154. doi: 10.1093/bioinformatics/8.2.149. [DOI] [PubMed] [Google Scholar]
- Shiba K., Ito K., Yura T. Mutation that suppresses the protein export defect of the secY mutation and causes cold-sensitive growth of Escherichia coli. J Bacteriol. 1984 Nov;160(2):696–701. doi: 10.1128/jb.160.2.696-701.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
- Spies H. S., Steenkamp D. J. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem. 1994 Aug 15;224(1):203–213. doi: 10.1111/j.1432-1033.1994.tb20013.x. [DOI] [PubMed] [Google Scholar]
- Trias J., Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol. 1994 Oct;14(2):283–290. doi: 10.1111/j.1365-2958.1994.tb01289.x. [DOI] [PubMed] [Google Scholar]
- Worley K. C., Wiese B. A., Smith R. F. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 1995 Sep;5(2):173–184. doi: 10.1101/gr.5.2.173. [DOI] [PubMed] [Google Scholar]
- Yano R., Nagai H., Shiba K., Yura T. A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J Bacteriol. 1990 Apr;172(4):2124–2130. doi: 10.1128/jb.172.4.2124-2130.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]