Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Dec;179(24):7834–7842. doi: 10.1128/jb.179.24.7834-7842.1997

Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR.

M D Hebert 1, J E Houghton 1
PMCID: PMC179749  PMID: 9401045

Abstract

We have used transpositional mutagenesis of a proline auxotroph (PAO951) to isolate an ornithine utilization (oru) mutant of Pseudomonas aeruginosa (PAO951-4) that was unable to use ornithine efficiently as the sole carbon and nitrogen source. DNA sequence analysis of the inactivated locus confirmed that the transposon had inserted into a locus whose product demonstrated significant primary sequence homology to members of the AraC family of transcriptional activators. DNA mobility shift assays affirmed this potential regulatory function and indicated that the inactivated gene encodes a transcriptional regulator, which has been designated OruR. In trying to define the ornithine utilization phenotype further, a similar inactivation was engineered in the wild-type strain, PAO1. The resulting isolate (PAO1R4) was totally unable to use ornithine as the sole carbon source. Despite the intensified phenotype, this isolate failed to demonstrate significant changes in any of the catabolic or anabolic enzymes that are known to be subject to regulation by the presence of either ornithine or arginine. It did, however, show modified levels of an enzyme, ornithine acetyltransferase (OAcT), that was previously thought to have merely an anaplerotic activity. Definition of this oruR locus and its effects upon OAcT activity provide evidence that control of ornithine levels in P. aeruginosa may have a significant impact upon how the cell is able to monitor and regulate the use of arginine and glutamate as sources of either carbon or nitrogen.

Full Text

The Full Text of this article is available as a PDF (685.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Carey J. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc Natl Acad Sci U S A. 1988 Feb;85(4):975–979. doi: 10.1073/pnas.85.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chou C. F., Chen C. W. argJ mutations are highly inducible by ethidium bromide in proB strains of Streptomyces lividans: implication of pathway interactions. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1101–1109. doi: 10.1016/0006-291x(92)92318-r. [DOI] [PubMed] [Google Scholar]
  4. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Orazio S. E., Collins C. M. The plasmid-encoded urease gene cluster of the family Enterobacteriaceae is positively regulated by UreR, a member of the AraC family of transcriptional activators. J Bacteriol. 1993 Jun;175(11):3459–3467. doi: 10.1128/jb.175.11.3459-3467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Früh R., Haas D., Leisinger T. Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa. Arch Microbiol. 1985 Mar;141(2):170–176. doi: 10.1007/BF00423280. [DOI] [PubMed] [Google Scholar]
  7. Gamper M., Ganter B., Polito M. R., Haas D. RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. J Mol Biol. 1992 Aug 20;226(4):943–957. doi: 10.1016/0022-2836(92)91044-p. [DOI] [PubMed] [Google Scholar]
  8. Hass D., Evans R., Mercenier A., Simon J. P., Stalon V. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol. 1979 Sep;139(3):713–720. doi: 10.1128/jb.139.3.713-720.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houghton J. E., Brown T. M., Appel A. J., Hughes E. J., Ornston L. N. Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol. 1995 Jan;177(2):401–412. doi: 10.1128/jb.177.2.401-412.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Isaac J. H., Holloway B. W. Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol. 1972 Dec;73(3):427–438. doi: 10.1099/00221287-73-3-427. [DOI] [PubMed] [Google Scholar]
  11. Itoh Y., Matsumoto H. Mutations affecting regulation of the anabolic argF and the catabolic aru genes in Pseudomonas aeruginosa PAO. Mol Gen Genet. 1992 Feb;231(3):417–425. doi: 10.1007/BF00292711. [DOI] [PubMed] [Google Scholar]
  12. Jann A., Stalon V., Wauven C. V., Leisinger T., Haas D. N-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4937–4941. doi: 10.1073/pnas.83.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joannou C. L., Brown P. R. NAD-dependent glutamate dehydrogenase from Pseudomonas aeruginosa is a membrane-bound enzyme. FEMS Microbiol Lett. 1992 Jan 1;69(2):205–209. doi: 10.1016/0378-1097(92)90630-7. [DOI] [PubMed] [Google Scholar]
  14. Klingel U., Miller C. M., North A. K., Stockley P. G., Baumberg S. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism. Mol Gen Genet. 1995 Aug 21;248(3):329–340. doi: 10.1007/BF02191600. [DOI] [PubMed] [Google Scholar]
  15. Kwon D. H., Lu C. D., Walthall D. A., Brown T. M., Houghton J. E., Abdelal A. T. Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutzeri: no untranslated region exists. J Bacteriol. 1994 May;176(9):2532–2542. doi: 10.1128/jb.176.9.2532-2542.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. doi: 10.1111/j.1432-1033.1977.tb11895.x. [DOI] [PubMed] [Google Scholar]
  17. Lesinger T., Haas D., Hegarty M. P. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta. 1972 Mar 14;262(2):214–219. doi: 10.1016/0005-2787(72)90235-3. [DOI] [PubMed] [Google Scholar]
  18. Lim D. B., Oppenheim J. D., Eckhardt T., Maas W. K. Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6697–6701. doi: 10.1073/pnas.84.19.6697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lu C. D., Houghton J. E., Abdelal A. T. Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator. J Mol Biol. 1992 May 5;225(1):11–24. doi: 10.1016/0022-2836(92)91022-h. [DOI] [PubMed] [Google Scholar]
  20. Maas W. K. The arginine repressor of Escherichia coli. Microbiol Rev. 1994 Dec;58(4):631–640. doi: 10.1128/mr.58.4.631-640.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meile L., Soldati L., Leisinger T. Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol. 1982 Aug;132(2):189–193. doi: 10.1007/BF00508729. [DOI] [PubMed] [Google Scholar]
  22. Park S. M., Lu C. D., Abdelal A. T. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol. 1997 Sep;179(17):5300–5308. doi: 10.1128/jb.179.17.5300-5308.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rella M., Mercenier A., Haas D. Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene. 1985;33(3):293–303. doi: 10.1016/0378-1119(85)90237-9. [DOI] [PubMed] [Google Scholar]
  24. Sakanyan V., Petrosyan P., Lecocq M., Boyen A., Legrain C., Demarez M., Hallet J. N., Glansdorff N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology. 1996 Jan;142(Pt 1):99–108. doi: 10.1099/13500872-142-1-99. [DOI] [PubMed] [Google Scholar]
  25. Savchenko A., Charlier D., Dion M., Weigel P., Hallet J. N., Holtham C., Baumberg S., Glansdorff N., Sakanyan V. The arginine operon of Bacillus stearothermophilus: characterization of the control region and its interaction with the heterologous B. subtilis arginine repressor. Mol Gen Genet. 1996 Aug 27;252(1-2):69–78. doi: 10.1007/BF02173206. [DOI] [PubMed] [Google Scholar]
  26. Schweizer H. D. Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques. 1993 Nov;15(5):831–834. [PubMed] [Google Scholar]
  27. Schweizer H. P. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene. 1991 Jan 2;97(1):109–121. doi: 10.1016/0378-1119(91)90016-5. [DOI] [PubMed] [Google Scholar]
  28. Stibitz S., Black W., Falkow S. The construction of a cloning vector designed for gene replacement in Bordetella pertussis. Gene. 1986;50(1-3):133–140. doi: 10.1016/0378-1119(86)90318-5. [DOI] [PubMed] [Google Scholar]
  29. Tricot C., Vander Wauven C., Wattiez R., Falmagne P., Stalon V. Purification and properties of a succinyltransferase from Pseudomonas aeruginosa specific for both arginine and ornithine. Eur J Biochem. 1994 Sep 15;224(3):853–861. doi: 10.1111/j.1432-1033.1994.00853.x. [DOI] [PubMed] [Google Scholar]
  30. Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol. 1966 Feb;91(2):617–621. doi: 10.1128/jb.91.2.617-621.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vander Wauven C., Stalon V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J Bacteriol. 1985 Nov;164(2):882–886. doi: 10.1128/jb.164.2.882-886.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  33. Voellmy R., Leisinger T. Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa. J Gen Microbiol. 1978 Nov;109(1):25–35. doi: 10.1099/00221287-109-1-25. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES