Abstract
Dinitrogenase reductase-activating glycohydrolase (DRAG), involved in the regulation of nitrogenase activity in Rhodospirillum rubrum, is associated with chromatophore membranes in cell extracts. We show that DRAG can be specifically released by treatment with MgGDP; other nucleotides studied had no effect. The DRAG activity released corresponds to the release of DRAG protein.
Full Text
The Full Text of this article is available as a PDF (355.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
- Burris R. H. Nitrogenases. J Biol Chem. 1991 May 25;266(15):9339–9342. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Ludden P. W., Burris R. H. Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. Science. 1976 Oct 22;194(4263):424–426. doi: 10.1126/science.824729. [DOI] [PubMed] [Google Scholar]
- Ludden P. W., Roberts G. P. Regulation of nitrogenase activity by reversible ADP ribosylation. Curr Top Cell Regul. 1989;30:23–56. doi: 10.1016/b978-0-12-152830-0.50004-9. [DOI] [PubMed] [Google Scholar]
- Nielsen G. M., Bao Y., Roberts G. P., Ludden P. W. Purification and characterization of an oxygen-stable form of dinitrogenase reductase-activating glycohydrolase from Rhodospirillum rubrum. Biochem J. 1994 Sep 15;302(Pt 3):801–806. doi: 10.1042/bj3020801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlund S., Eriksson U., Baltscheffsky H. Necessity of a membrane component for nitrogenase activity in Rhodospirillum rubrum. Biochim Biophys Acta. 1977 Oct 12;462(1):187–195. doi: 10.1016/0005-2728(77)90201-8. [DOI] [PubMed] [Google Scholar]
- Norén A., Nordlund S. Changes in the NAD(P)H concentration caused by addition of nitrogenase 'switch-off' effectors in Rhodospirillum rubrum G-9, as measured by fluorescence. FEBS Lett. 1994 Dec 12;356(1):43–45. doi: 10.1016/0014-5793(94)01233-4. [DOI] [PubMed] [Google Scholar]
- Norén A., Soliman A., Nordlund S. The role of NAD+ as a signal during nitrogenase switch-off in Rhodospirillum rubrum. Biochem J. 1997 Mar 15;322(Pt 3):829–832. doi: 10.1042/bj3220829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
- Soliman A., Nordlund S. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum. Arch Microbiol. 1992;157(5):431–435. doi: 10.1007/BF00249100. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zumft W. G., Castillo F. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Arch Microbiol. 1978 Apr 27;117(1):53–60. doi: 10.1007/BF00689351. [DOI] [PubMed] [Google Scholar]