Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1984 Oct;26(4):466–475. doi: 10.1128/aac.26.4.466

Broad-spectrum synergistic antiviral activity of selenazofurin and ribavirin.

J J Kirsi, P A McKernan, N J Burns 3rd, J A North, B K Murray, R K Robins
PMCID: PMC179946  PMID: 6517540

Abstract

The antiviral effects of selenazofurin (2-beta-D-ribofuranosylselenazole-4-carboxamide, selenazole), ribavirin (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide), and 3-deazaguanosine (6-amino-1-beta-D-ribofuranosylimidazo-[4.5-C]pyridin-4(5H)-one) were investigated separately and in various combinations in an in vitro study. The combination interactions were evaluated at seven drug concentrations, graphically (isobolograms) or by using fractional inhibitory concentration indices against mumps, measles, parainfluenza virus type 3, vaccinia and herpes simplex virus type 2 viruses in Vero and HeLa cells. Selenazofurin in combination with ribavirin produced the greatest synergistic antiviral activity. However, the degree of synergy depended on the virus and cell line used. In contrast, selenazofurin combined with 3-deazaguanosine consistently yielded an indifferent or an antagonistic response, or both, whereas the ribavirin-3-deazaguanosine interaction was additive against the same viruses. Single-drug cytotoxicity was minimal for the cytostatic agents selenazofurin and ribavirin but was markedly higher for cytocidal 3-deazaguanosine, as determined by relative plating efficiency after drug exposure. The drug combinations did not significantly increase cytotoxicity (they were only additive) when used on uninfected cells. Therefore, the enhanced antiviral activities of the drug combinations (shown to be synergistic) were due to specific effects against viral replication. These results indicated that in Vero and HeLa cells (i) the combination of selenazofurin and ribavirin produced an enhanced antiviral effect, thus requiring smaller amounts of drug to cause the same antiviral effect relative to a single compound; (ii) selenazofurin when compared with ribavirin and 3-deazaguanosine appeared to have a somewhat different mode of antiviral action; (iii) 3-deazaguanosine combined with selenazofurin was an unsuitable antiviral combination; and (iv) the antiviral activity of 3-deazaguanosine appeared to be due largely to its general overall cytotoxic effect.

Full text

PDF
466

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen L. B., Huffman J. H., Dan Cook P., Meyer R. B., Jr, Robins R. K., Sidwell R. W. Antiviral activity of 3-deazaguanine, 3-deazaguanosine, and 3-deazaguanylic acid. Antimicrob Agents Chemother. 1977 Jul;12(1):114–119. doi: 10.1128/aac.12.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. B., Vanderslice L. K., Fingal C. M., McCright F. H., Harris E. F., Cook P. D. Evaluation of the anti-herpesvirus drug combinations: virazole plus arabinofuranosylhypoxanthine and virazole plus arabinofuranosyladenine. Antiviral Res. 1982 Sep;2(4):203–216. doi: 10.1016/0166-3542(82)90043-2. [DOI] [PubMed] [Google Scholar]
  3. Ayisi N. K., Gupta V. S., Meldrum J. B., Taneja A. K., Babiuk L. A. Combination chemotherapy: interaction of 5-methoxymethyldeoxyuridine with adenine arabinoside, 5-ethyldeoxyuridine, 5-iododeoxyuridine, and phosphonoacetic acid against herpes simplex virus types 1 and 2. Antimicrob Agents Chemother. 1980 Apr;17(4):558–566. doi: 10.1128/aac.17.4.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berenbaum M. C. A method for testing for synergy with any number of agents. J Infect Dis. 1978 Feb;137(2):122–130. doi: 10.1093/infdis/137.2.122. [DOI] [PubMed] [Google Scholar]
  5. Browne M. J. Comparative inhibition of influenza and parainfluenza virus replication by ribavirin in MDCK cells. Antimicrob Agents Chemother. 1981 May;19(5):712–715. doi: 10.1128/aac.19.5.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Browne M. J. Mechanism and specificity of action of ribavirin. Antimicrob Agents Chemother. 1979 Jun;15(6):747–753. doi: 10.1128/aac.15.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Browne M. J., Moss M. Y., Boyd M. R. Comparative activity of amantadine and ribavirin against influenza virus in vitro: possible clinical relevance. Antimicrob Agents Chemother. 1983 Mar;23(3):503–505. doi: 10.1128/aac.23.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burlington D. B., Meiklejohn G., Mostow S. R. Anti-influenza A activity of combinations of amantadine and ribavirin in ferret tracheal ciliated epithelium. J Antimicrob Chemother. 1983 Jan;11(1):7–14. doi: 10.1093/jac/11.1.7. [DOI] [PubMed] [Google Scholar]
  9. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  10. Cook P. D., Allen L. B., Streeter D. G., Huffman J. H., Sidwell R. W., Robins R. K. Synthesis and antiviral and enzymatic studies of certain 3-deazaguanines and their imidazolecarboxamide precursors. J Med Chem. 1978 Dec;21(12):1212–1218. doi: 10.1021/jm00210a008. [DOI] [PubMed] [Google Scholar]
  11. Cook P. D., Rousseau R. J., Mian A. M., Meyer R. B., Jr, Dea P., Ivanovics G. Letter: A new class of potent guanine antimetabolites. Synthesis of 3-deazaguanine, 3-deazaguanosine, and 3-deazaguanylic acid by a novel ring closure of imidazole precursors. J Am Chem Soc. 1975 May 14;97(10):2916–2916. doi: 10.1021/ja00843a059. [DOI] [PubMed] [Google Scholar]
  12. De Cercq E., Luczak M. Fluoroimidazoles as antiviral agents and inhibitors of polynucleotide biosynthesis. Life Sci. 1975 Jul 15;17(2):187–194. doi: 10.1016/0024-3205(75)90502-0. [DOI] [PubMed] [Google Scholar]
  13. Drach J. C., Shipman C., Jr The selective inhibition of viral DNA synthesis by chemotherapeutic agents: an indicator of clinical usefulness? Ann N Y Acad Sci. 1977 Mar 4;284:396–409. doi: 10.1111/j.1749-6632.1977.tb21976.x. [DOI] [PubMed] [Google Scholar]
  14. Drach J. C., Thomas M. A., Barnett J. W., Smith S. H., Shipman C., Jr Tritiated thymidine incorporation does not measure DNA synthesis in ribavirin-treated human cells. Science. 1981 May 1;212(4494):549–551. doi: 10.1126/science.7209549. [DOI] [PubMed] [Google Scholar]
  15. ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
  16. Eriksson B., Helgstrand E., Johansson N. G., Larsson A., Misiorny A., Norén J. O., Philipson L., Stenberg K., Stening G., Stridh S. Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob Agents Chemother. 1977 Jun;11(6):946–951. doi: 10.1128/aac.11.6.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galegov G. A., Pushkarskaya N. L., Obrosova-Serova N. P., Zhdanov V. M. Combined action of ribovirin and rimantadine in experimental myxovirus infection. Experientia. 1977 Jul 15;33(7):905–906. doi: 10.1007/BF01951273. [DOI] [PubMed] [Google Scholar]
  18. Goswami B. B., Borek E., Sharma O. K., Fujitaki J., Smith R. A. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem Biophys Res Commun. 1979 Aug 13;89(3):830–836. doi: 10.1016/0006-291x(79)91853-9. [DOI] [PubMed] [Google Scholar]
  19. Hayden F. G., Douglas R. G., Jr, Simons R. Enhancement of activity against influenza viruses by combinations of antiviral agents. Antimicrob Agents Chemother. 1980 Oct;18(4):536–541. doi: 10.1128/aac.18.4.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jayaram H. N., Ahluwalia G. S., Dion R. L., Gebeyehu G., Marquez V. E., Kelley J. A., Robins R. K., Cooney D. A., Johns D. G. Conversion of 2-beta-D-ribofuranosylselenazole-4-carboxamide to an analogue of NAD with potent IMP dehydrogenase-inhibitory properties. Biochem Pharmacol. 1983 Sep 1;32(17):2633–2636. doi: 10.1016/0006-2952(83)90038-2. [DOI] [PubMed] [Google Scholar]
  21. Jenkins F. J., Chen Y. C. Effect of ribavirin on Rous sarcoma virus transformation. Antimicrob Agents Chemother. 1981 Feb;19(2):364–368. doi: 10.1128/aac.19.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jolley W. B., Chu W. T., Salter J. M., Hinshaw D. B., Randhawa A. S. Antitumor effects of ribavirin on L1210 leukemia in the DBA/2 mouse. Ann N Y Acad Sci. 1977 Mar 4;284:585–590. doi: 10.1111/j.1749-6632.1977.tb21990.x. [DOI] [PubMed] [Google Scholar]
  23. Katz E., Margalith E., Winer B. Inhibition of vaccinia virus growth by the nucleoside analogue 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (virazole, ribavirin). J Gen Virol. 1976 Aug;32(2):327–330. doi: 10.1099/0022-1317-32-2-327. [DOI] [PubMed] [Google Scholar]
  24. Kirsi J. J., North J. A., McKernan P. A., Murray B. K., Canonico P. G., Huggins J. W., Srivastava P. C., Robins R. K. Broad-spectrum antiviral activity of 2-beta-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agent. Antimicrob Agents Chemother. 1983 Sep;24(3):353–361. doi: 10.1128/aac.24.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LOEWE S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953 Jun;3(6):285–290. [PubMed] [Google Scholar]
  26. Larsson A., Stenberg K., Oberg B. Reversible inhibition of cellular metabolism by ribavirin. Antimicrob Agents Chemother. 1978 Feb;13(2):154–158. doi: 10.1128/aac.13.2.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lowe J. K., Brox L., Henderson J. F. Consequences of inhibition of guanine nucleotide synthesis by mycophenolic acid and virazole. Cancer Res. 1977 Mar;37(3):736–743. [PubMed] [Google Scholar]
  28. Lucas D. L., Robins R. K., Knight R. D., Wright D. G. Induced maturation of the human promyelocytic leukemia cell line, HL-60, by 2-beta-D-ribofuranosylselenazole-4-carboxamide. Biochem Biophys Res Commun. 1983 Sep 30;115(3):971–980. doi: 10.1016/s0006-291x(83)80030-8. [DOI] [PubMed] [Google Scholar]
  29. Müller W. E., Maidhof A., Taschner H., Zahn R. K. Virazole (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide; a cytostatic agent. Biochem Pharmacol. 1977 Jun 1;26(11):1071–1075. doi: 10.1016/0006-2952(77)90246-5. [DOI] [PubMed] [Google Scholar]
  30. Oxford J. S. Inhibition of the replication of influenza A and B viruses by a nucleoside analogue (ribavirin). J Gen Virol. 1975 Sep;28(3):409–414. doi: 10.1099/0022-1317-28-3-409. [DOI] [PubMed] [Google Scholar]
  31. Peavy D. L., Koff W. C., Hyman D. S., Knight V. Inhibition of lymphocyte proliferative responses by ribavirin. Infect Immun. 1980 Aug;29(2):583–589. doi: 10.1128/iai.29.2.583-589.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peavy D. L., Powers C. N., Knight V. Inhibition of murine plaque-forming cell responses in vivo by ribavirin. J Immunol. 1981 Mar;126(3):861–864. [PubMed] [Google Scholar]
  33. Potter C. W., Phair J. P., Vodinelich L., Fenton R., Jennings R. Antiviral, immunosuppressive and antitumour effects of ribavirin. Nature. 1976 Feb 12;259(5543):496–497. doi: 10.1038/259496a0. [DOI] [PubMed] [Google Scholar]
  34. Sarver N., Stollar V. Virazole prevents production of Sindbis virus and virus-induced cytopathic effect in Aedes albopictus cells. Virology. 1978 Dec;91(2):267–282. doi: 10.1016/0042-6822(78)90375-6. [DOI] [PubMed] [Google Scholar]
  35. Saunders P. P., Chao L. Y., Loo T. L., Robins R. K. Actions of 3-deazaguanine and 3-deazaguanosine on variant lines of Chinese hamster ovary cells. Biochem Pharmacol. 1981 Aug 15;30(16):2374–2376. doi: 10.1016/0006-2952(81)90118-0. [DOI] [PubMed] [Google Scholar]
  36. Schinazi R. F., Peters J., Williams C. C., Chance D., Nahmias A. J. Effect of combinations of acyclovir with vidarabine or its 5'-monophosphate on herpes simplex viruses in cell culture and in mice. Antimicrob Agents Chemother. 1982 Sep;22(3):499–507. doi: 10.1128/aac.22.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scholtissek C. Inhibition of influenza RNA synthesis by virazole (ribavirin). Arch Virol. 1976;50(4):349–352. doi: 10.1007/BF01317961. [DOI] [PubMed] [Google Scholar]
  38. Shannon W. M. Selective inhibition of RNA tumor virus replication in vitro and evaluation of candidate antiviral agents in vivo. Ann N Y Acad Sci. 1977 Mar 4;284:472–507. doi: 10.1111/j.1749-6632.1977.tb21983.x. [DOI] [PubMed] [Google Scholar]
  39. Smith C. M., Fontenelle L. J., Muzik H., Paterson A. R., Unger H., Brox L. W., Henderson J. F. Inhibitors of inosinate dehydrogenase activity in Ehrlich ascites tumor cells in vitro. Biochem Pharmacol. 1974 Oct 1;23(19):2727–2735. doi: 10.1016/0006-2952(74)90043-4. [DOI] [PubMed] [Google Scholar]
  40. Srivastava P. C., Robins R. K. Synthesis and antitumor activity of 2-beta-D-ribofuranosylselenazole-4- carboxamide and related derivatives. J Med Chem. 1983 Mar;26(3):445–448. doi: 10.1021/jm00357a024. [DOI] [PubMed] [Google Scholar]
  41. Streeter D. G., Koyama H. H. Inhibition of purine nucleotide biosynthesis by 3-deazaguanine, its nucleoside and 5'-nucleotide. Biochem Pharmacol. 1976 Nov 1;25(21):2413–2415. doi: 10.1016/0006-2952(76)90041-1. [DOI] [PubMed] [Google Scholar]
  42. Streeter D. G., Miller J. P., Robins R. K., Simon L. N. The enzymic conversion of 1,2,4-triazole-3-carboxamide to ribavirin-5'-phosphate and its relationship to the proposed mechanism of action. Ann N Y Acad Sci. 1977 Mar 4;284:201–210. doi: 10.1111/j.1749-6632.1977.tb21952.x. [DOI] [PubMed] [Google Scholar]
  43. Streeter D. G., Robins R. K. Comparative in vitro studies of Tiazofurin and a selenazole analog. Biochem Biophys Res Commun. 1983 Sep 15;115(2):544–550. doi: 10.1016/s0006-291x(83)80179-x. [DOI] [PubMed] [Google Scholar]
  44. Streeter D. G., Witkowski J. T., Khare G. P., Sidwell R. W., Bauer R. J., Robins R. K., Simon L. N. Mechanism of action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174–1178. doi: 10.1073/pnas.70.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tattersall M. H., Harrap K. R. Combination chemotherapy: the antagonism of methotrexate and cytosine arabinoside. Eur J Cancer. 1973 Mar;9(3):229–232. doi: 10.1016/s0014-2964(73)80023-4. [DOI] [PubMed] [Google Scholar]
  46. Wilson S. Z., Knight V., Wyde P. R., Drake S., Couch R. B. Amantadine and ribavirin aerosol treatment of influenza A and B infection in mice. Antimicrob Agents Chemother. 1980 Apr;17(4):642–648. doi: 10.1128/aac.17.4.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Witkowski J. T., Robins R. K., Sidwell R. W., Simon L. N. Design, synthesis, and broad spectrum antiviral activity of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J Med Chem. 1972 Nov;15(11):1150–1154. doi: 10.1021/jm00281a014. [DOI] [PubMed] [Google Scholar]
  48. Zimmerman T. P., Deeprose R. D. Metabolism of 5-amino-1-beta-D-ribofuranosylimidazole-4-carboxamide and related five-membered heterocycles to 5'-triphosphates in human blood and L5178Y cells. Biochem Pharmacol. 1978 Mar 1;27(5):709–716. doi: 10.1016/0006-2952(78)90508-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES