Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Apr;27(4):525–530. doi: 10.1128/aac.27.4.525

In vitro activities of and mechanisms of resistance to antifol antimalarial drugs.

W K Milhous, N F Weatherly, J H Bowdre, R E Desjardins
PMCID: PMC180089  PMID: 3890727

Abstract

Certain drugs that interfere with folate metabolism (sulfones, sulfonamides, and inhibitors of dihydrofolate reductase) play an important role in the chemotherapy and prophylaxis of malaria. The activities and mechanisms of action of these drugs are regarded as similar in most respects to their activities against procaryotic microorganisms. Believed incapable of utilizing intact exogenous folates, plasmodia have been regarded as dependent on de novo synthesis of required folate cofactors. The present investigation, conducted in pursuit of a method for testing the in vitro susceptibility of Plasmodium falciparum to antifol antimalarial drugs, produced evidence that earlier assumptions about the folate metabolism of this organism are not correct. Three of four isolates of P. falciparum were successfully maintained in a culture medium depleted of folic acid and p-aminobenzoic acid. The antimalarial activities of sulfonamides and dihydrofolate reductase inhibitors were, furthermore, variably antagonized by the presence of folic acid and p-aminobenzoic acid in the culture medium. Optimum conditions for assessment of antifol antimalarial activity in vitro therefore require precise control of these factors in the culture medium. Our results suggest that resistance to antifol antimalarial drugs involves a complex of factors related to both the de novo synthesis of active folate cofactors and the ability to utilize exogenous intact folates in various forms.

Full text

PDF
525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brockelman C. R., Tan-ariya P. Plasmodium falciparum in continuous culture: a new medium for the in vitro test for sulfadoxine sensitivity. Bull World Health Organ. 1982;60(3):423–426. [PMC free article] [PubMed] [Google Scholar]
  2. Chulay J. D., Haynes J. D., Diggs C. L. Plasmodium falciparum: assessment of in vitro growth by [3H]hypoxanthine incorporation. Exp Parasitol. 1983 Feb;55(1):138–146. doi: 10.1016/0014-4894(83)90007-3. [DOI] [PubMed] [Google Scholar]
  3. Chulay J. D., Watkins W. M., Sixsmith D. G. Synergistic antimalarial activity of pyrimethamine and sulfadoxine against Plasmodium falciparum in vitro. Am J Trop Med Hyg. 1984 May;33(3):325–330. doi: 10.4269/ajtmh.1984.33.325. [DOI] [PubMed] [Google Scholar]
  4. Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferone R., Burchall J. J., Hitchings G. H. Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol. 1969 Jan;5(1):49–59. [PubMed] [Google Scholar]
  6. Ferone R. Dihydrofolate reductase from pyrimethamine-resistant Plasmodium berghei. J Biol Chem. 1970 Feb 25;245(4):850–854. [PubMed] [Google Scholar]
  7. Ferone R. Folate metabolism in malaria. Bull World Health Organ. 1977;55(2-3):291–298. [PMC free article] [PubMed] [Google Scholar]
  8. Haynes J. D., Diggs C. L., Hines F. A., Desjardins R. E. Culture of human malaria parasites Plasmodium falciparum. Nature. 1976 Oct 28;263(5580):767–769. doi: 10.1038/263767a0. [DOI] [PubMed] [Google Scholar]
  9. JACOBS R. L. ROLE OF P-AMINOBENZOIC ACID IN PLASMODIUM BERGHEI INFECTION IN THE MOUSE. Exp Parasitol. 1964 Jun;15:213–225. doi: 10.1016/0014-4894(64)90017-7. [DOI] [PubMed] [Google Scholar]
  10. Kan S. C., Siddiqui W. A. Comparative studies on dihydrofolate reductases from Plasmodium falciparum and Aotus trivirgatus. J Protozool. 1979 Nov;26(4):660–664. doi: 10.1111/j.1550-7408.1979.tb04216.x. [DOI] [PubMed] [Google Scholar]
  11. McCormick G. J., Canfield C. J., Willet G. P. Plasmodium knowlesi: in vitro evaluation of antimalarial activity of folic acid inhibitors. Exp Parasitol. 1971 Aug;30(1):88–93. doi: 10.1016/0014-4894(71)90074-9. [DOI] [PubMed] [Google Scholar]
  12. ROLLO I. M. The mode of action of sulphonamides, proguanil and pyrimethamine on Plasmodium gallinaceum. Br J Pharmacol Chemother. 1955 Jun;10(2):208–214. doi: 10.1111/j.1476-5381.1955.tb00084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Retief F. P., Huskisson Y. J. Folate binders in body fluids. J Clin Pathol. 1970 Nov;23(8):703–707. doi: 10.1136/jcp.23.8.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. THURSTON J. P. The chemotherapy of Plasmodium berghei. II. Antagonism of the action of drugs. Parasitology. 1954 May;44(1-2):99–110. doi: 10.1017/s0031182000018813. [DOI] [PubMed] [Google Scholar]
  15. Tan-Ariya P., Brockelman C. R. Plasmodium falciparum: variations in p-aminobenzoic acid requirements as related to sulfadoxine sensitivity. Exp Parasitol. 1983 Jun;55(3):364–371. doi: 10.1016/0014-4894(83)90033-4. [DOI] [PubMed] [Google Scholar]
  16. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  17. Trenholme G. M., Williams R. L., Frischer H., Carson P. E., Rieckmann K. H. Host failure in treatment of malaria with sulfalene and pyrimethamine. Ann Intern Med. 1975 Feb;82(2):219–223. doi: 10.7326/0003-4819-82-2-219. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES