Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1995 Jun;56(6):1359–1366.

CFTR Haplotype Analysis Reveals Genetic Heterogeneity in the Etiology of Congenital Bilateral Aplasia of the Vas Deferens

Naama Rave-Harel, Igael Madgar, Ran Goshen, Malka Nissim-Rafinia, Anuar Ziadni, Ayelet Rahat, Ornit Chiba, Yoram M Kalman, Chaim Brautbar, David Levinson, Arie Augarten, Eitan Kerem, Batsheva Kerem
PMCID: PMC1801105  PMID: 7539210

Abstract

Congenital bilateral aplasia of the vas deferens (CBAVD) was suggested to be a mild form of cystic fibrosis (CF). Mutation analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in males with CBAVD revealed that in some males CBAVD is caused by two defective CFTR alleles. The genetic basis of CBAVD in the other males and its association with CF remained unclear. We undertook this study to test the hypothesis of commonality of CBAVD and CF by haplotype analysis, in the CFTR locus, of males suffering from CBAVD and of their families. According to the hypothesis of commonality of CBAVD and CF, two brothers with CBAVD are expected to carry the same two CFTR alleles, while their fertile brothers are expected to carry at least one different allele. Eleven families were studied, of which two families, with unidentified CFTR mutations, did not support this hypothesis. In these families two brothers with CBAVD inherited different CFTR alleles. Their fertile brothers inherited the same CFTR alleles as their brothers with CBAVD. These results provide evidence for genetic heterogeneity in CBAVD. Though in some families CBAVD is associated with two CFTR mutations, we suggest that in others it is caused by other mechanisms, such as mutations at other loci or homozygosity or heterozygosity for partially penetrant CFTR mutations.

Full text

PDF
1359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeliovich D., Lavon I. P., Lerer I., Cohen T., Springer C., Avital A., Cutting G. R. Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population. Am J Hum Genet. 1992 Nov;51(5):951–956. [PMC free article] [PubMed] [Google Scholar]
  2. Amar A., Battat S., Anteby S. O., Brautbar C., Reubinoff B. E. Invasive squamous cell carcinoma of the cervix: is HLA-DQ a disease marker in Jewish patients? Eur J Immunogenet. 1993 Oct;20(5):327–333. doi: 10.1111/j.1744-313x.1993.tb00152.x. [DOI] [PubMed] [Google Scholar]
  3. Anguiano A., Oates R. D., Amos J. A., Dean M., Gerrard B., Stewart C., Maher T. A., White M. B., Milunsky A. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA. 1992 Apr 1;267(13):1794–1797. [PubMed] [Google Scholar]
  4. Augarten A., Yahav Y., Kerem B. S., Halle D., Laufer J., Szeinberg A., Dor J., Mashiach S., Gazit E., Madgar I. Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet. 1994 Nov 26;344(8935):1473–1474. doi: 10.1016/s0140-6736(94)90292-5. [DOI] [PubMed] [Google Scholar]
  5. Cao Z., Natowicz M. R., Kaback M. M., Lim-Steele J. S., Prence E. M., Brown D., Chabot T., Triggs-Raine B. L. A second mutation associated with apparent beta-hexosaminidase A pseudodeficiency: identification and frequency estimation. Am J Hum Genet. 1993 Dec;53(6):1198–1205. [PMC free article] [PubMed] [Google Scholar]
  6. Chehab F. F., Johnson J., Louie E., Goossens M., Kawasaki E., Erlich H. A dimorphic 4-bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the delta F508 mutation: implications for prenatal diagnosis and mutation origin. Am J Hum Genet. 1991 Feb;48(2):223–226. [PMC free article] [PubMed] [Google Scholar]
  7. Culard J. F., Desgeorges M., Costa P., Laussel M., Razakatzara G., Navratil H., Demaille J., Claustres M. Analysis of the whole CFTR coding regions and splice junctions in azoospermic men with congenital bilateral aplasia of epididymis or vas deferens. Hum Genet. 1994 Apr;93(4):467–470. doi: 10.1007/BF00201678. [DOI] [PubMed] [Google Scholar]
  8. Dean M., Drumm M. L., Stewart C., Gerrard B., Perry A., Hidaka N., Cole J. L., Collins F. S., Iannuzzi M. C. Approaches to localizing disease genes as applied to cystic fibrosis. Nucleic Acids Res. 1990 Jan 25;18(2):345–350. doi: 10.1093/nar/18.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dean M., White M. B., Amos J., Gerrard B., Stewart C., Khaw K. T., Leppert M. Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell. 1990 Jun 1;61(5):863–870. doi: 10.1016/0092-8674(90)90196-l. [DOI] [PubMed] [Google Scholar]
  10. Dörk T., Neumann T., Wulbrand U., Wulf B., Kälin N., Maass G., Krawczak M., Guillermit H., Ferec C., Horn G. Intra- and extragenic marker haplotypes of CFTR mutations in cystic fibrosis families. Hum Genet. 1992 Feb;88(4):417–425. doi: 10.1007/BF00215676. [DOI] [PubMed] [Google Scholar]
  11. Dörk T., Will K., Demmer A., Tümmler B. A donor splice mutation (405 + 1 G-->A) in cystic fibrosis associated with exon skipping in epithelial CFTR mRNA. Hum Mol Genet. 1993 Nov;2(11):1965–1966. doi: 10.1093/hmg/2.11.1965. [DOI] [PubMed] [Google Scholar]
  12. Highsmith W. E., Burch L. H., Zhou Z., Olsen J. C., Boat T. E., Spock A., Gorvoy J. D., Quittel L., Friedman K. J., Silverman L. M. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994 Oct 13;331(15):974–980. doi: 10.1056/NEJM199410133311503. [DOI] [PubMed] [Google Scholar]
  13. Holsclaw D. S., Perlmutter A. D., Jockin H., Shwachman H. Genital abnormalities in male patients with cystic fibrosis. J Urol. 1971 Oct;106(4):568–574. doi: 10.1016/s0022-5347(17)61343-0. [DOI] [PubMed] [Google Scholar]
  14. Horn G. T., Richards B., Merrill J. J., Klinger K. W. Characterization and rapid diagnostic analysis of DNA polymorphisms closely linked to the cystic fibrosis locus. Clin Chem. 1990 Sep;36(9):1614–1619. [PubMed] [Google Scholar]
  15. Horowitz M., Tzuri G., Eyal N., Berebi A., Kolodny E. H., Brady R. O., Barton N. W., Abrahamov A., Zimran A. Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients. Am J Hum Genet. 1993 Oct;53(4):921–930. [PMC free article] [PubMed] [Google Scholar]
  16. Kerem B. S., Zielenski J., Markiewicz D., Bozon D., Gazit E., Yahav J., Kennedy D., Riordan J. R., Collins F. S., Rommens J. M. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447–8451. doi: 10.1073/pnas.87.21.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  18. Kiesewetter S., Macek M., Jr, Davis C., Curristin S. M., Chu C. S., Graham C., Shrimpton A. E., Cashman S. M., Tsui L. C., Mickle J. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet. 1993 Nov;5(3):274–278. doi: 10.1038/ng1193-274. [DOI] [PubMed] [Google Scholar]
  19. Martin R. A., Jones K. L., Downey E. C. Congenital absence of the vas deferens: recurrence in a family. Am J Med Genet. 1992 Mar 1;42(5):714–715. doi: 10.1002/ajmg.1320420517. [DOI] [PubMed] [Google Scholar]
  20. Mercier B., Verlingue C., Lissens W., Silber S. J., Novelli G., Bonduelle M., Audrézet M. P., Férec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272–277. [PMC free article] [PubMed] [Google Scholar]
  21. Morral N., Estivill X. Multiplex PCR amplification of three microsatellites within the CFTR gene. Genomics. 1992 Aug;13(4):1362–1364. doi: 10.1016/0888-7543(92)90071-y. [DOI] [PubMed] [Google Scholar]
  22. Ng I. S., Pace R., Richard M. V., Kobayashi K., Kerem B., Tsui L. C., Beaudet A. L. Methods for analysis of multiple cystic fibrosis mutations. Hum Genet. 1991 Sep;87(5):613–617. doi: 10.1007/BF00209023. [DOI] [PubMed] [Google Scholar]
  23. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Osborne L. R., Lynch M., Middleton P. G., Alton E. W., Geddes D. M., Pryor J. P., Hodson M. E., Santis G. K. Nasal epithelial ion transport and genetic analysis of infertile men with congenital bilateral absence of the vas deferens. Hum Mol Genet. 1993 Oct;2(10):1605–1609. doi: 10.1093/hmg/2.10.1605. [DOI] [PubMed] [Google Scholar]
  25. Osborne L., Knight R., Santis G., Hodson M. A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet. 1991 Mar;48(3):608–612. [PMC free article] [PubMed] [Google Scholar]
  26. Patrizio P., Asch R. H., Handelin B., Silber S. J. Aetiology of congenital absence of vas deferens: genetic study of three generations. Hum Reprod. 1993 Feb;8(2):215–220. doi: 10.1093/oxfordjournals.humrep.a138025. [DOI] [PubMed] [Google Scholar]
  27. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  28. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  29. Rommens J., Kerem B. S., Greer W., Chang P., Tsui L. C., Ray P. Rapid nonradioactive detection of the major cystic fibrosis mutation. Am J Hum Genet. 1990 Feb;46(2):395–396. [PMC free article] [PubMed] [Google Scholar]
  30. Rosenbloom C. L., Kerem B. S., Rommens J. M., Tsui L. C., Wainwright B., Williamson R., O'Brien W. E., Beaudet A. L. DNA amplification for detection of the XV-2c polymorphism linked to cystic fibrosis. Nucleic Acids Res. 1989 Sep 12;17(17):7117–7117. doi: 10.1093/nar/17.17.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  32. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  33. Sereth H., Shoshani T., Bashan N., Kerem B. S. Extended haplotype analysis of cystic fibrosis mutations and its implications for the selective advantage hypothesis. Hum Genet. 1993 Oct 1;92(3):289–295. doi: 10.1007/BF00244474. [DOI] [PubMed] [Google Scholar]
  34. Shoshani T., Augarten A., Gazit E., Bashan N., Yahav Y., Rivlin Y., Tal A., Seret H., Yaar L., Kerem E. Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet. 1992 Jan;50(1):222–228. [PMC free article] [PubMed] [Google Scholar]
  35. Shoshani T., Augarten A., Yahav J., Gazit E., Kerem B. Two novel mutations in the CFTR gene: W1089X in exon 17B and 4010delTATT in exon 21. Hum Mol Genet. 1994 Apr;3(4):657–658. doi: 10.1093/hmg/3.4.657. [DOI] [PubMed] [Google Scholar]
  36. Shoshani T., Berkun Y., Yahav Y., Augarten A., Bashan N., Rivlin Y., Gazit E., Sereth H., Kerem E., Kerem B. S. A new mutation in the CFTR gene, composed of two adjacent DNA alterations, is a common cause of cystic fibrosis among Georgian Jews. Genomics. 1993 Jan;15(1):236–237. doi: 10.1006/geno.1993.1046. [DOI] [PubMed] [Google Scholar]
  37. Silber S. J., Ord T., Balmaceda J., Patrizio P., Asch R. H. Congenital absence of the vas deferens. The fertilizing capacity of human epididymal sperm. N Engl J Med. 1990 Dec 27;323(26):1788–1792. doi: 10.1056/NEJM199012273232602. [DOI] [PubMed] [Google Scholar]
  38. Tomczak J., Boogen C., Grebner E. E. Distribution of a pseudodeficiency allele among Tay-Sachs carriers. Am J Hum Genet. 1993 Aug;53(2):537–539. [PMC free article] [PubMed] [Google Scholar]
  39. Winship P. R. An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res. 1989 Feb 11;17(3):1266–1266. doi: 10.1093/nar/17.3.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zielenski J., Bozon D., Kerem B., Markiewicz D., Durie P., Rommens J. M., Tsui L. C. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):229–235. doi: 10.1016/0888-7543(91)90504-8. [DOI] [PubMed] [Google Scholar]
  41. Zielenski J., Rozmahel R., Bozon D., Kerem B., Grzelczak Z., Riordan J. R., Rommens J., Tsui L. C. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):214–228. doi: 10.1016/0888-7543(91)90503-7. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES