Abstract
The polymorphic arylamine N-acetyltransferase (NAT2; EC 2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had a genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2*4/*4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles *5A, *5C, and *13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of *6A, *7B, and *13 alleles than the group of *5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agúndez J. A., Martínez C., Olivera M., Ledesma M. C., Ladero J. M., Benítez J. Molecular analysis of the arylamine N-acetyltransferase polymorphism in a Spanish population. Clin Pharmacol Ther. 1994 Aug;56(2):202–209. doi: 10.1038/clpt.1994.124. [DOI] [PubMed] [Google Scholar]
- Bechtel Y. C., Bonaiti-Pellie C., Poisson N., Magnette J., Bechtel P. R. A population and family study of N-acetyltransferase using caffeine urinary metabolites. Clin Pharmacol Ther. 1993 Aug;54(2):134–141. doi: 10.1038/clpt.1993.124. [DOI] [PubMed] [Google Scholar]
- Bell D. A., Taylor J. A., Butler M. A., Stephens E. A., Wiest J., Brubaker L. H., Kadlubar F. F., Lucier G. W. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis. 1993 Aug;14(8):1689–1692. doi: 10.1093/carcin/14.8.1689. [DOI] [PubMed] [Google Scholar]
- Blum M., Demierre A., Grant D. M., Heim M., Meyer U. A. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5237–5241. doi: 10.1073/pnas.88.12.5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum M., Grant D. M., McBride W., Heim M., Meyer U. A. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990 Apr;9(3):193–203. doi: 10.1089/dna.1990.9.193. [DOI] [PubMed] [Google Scholar]
- Cribb A. E., Isbrucker R., Levatte T., Tsui B., Gillespie C. T., Renton K. W. Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Pharmacogenetics. 1994 Jun;4(3):166–170. [PubMed] [Google Scholar]
- Deguchi T., Mashimo M., Suzuki T. Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem. 1990 Aug 5;265(22):12757–12760. [PubMed] [Google Scholar]
- EVANS D. A., WHITE T. A. HUMAN ACETYLATION POLYMORPHISM. J Lab Clin Med. 1964 Mar;63:394–403. [PubMed] [Google Scholar]
- Ferguson R. J., Doll M. A., Rustan T. D., Gray K., Hein D. W. Cloning, expression, and functional characterization of two mutant (NAT2(191) and NAT2(341/803)) and wild-type human polymorphic N-acetyltransferase (NAT2) alleles. Drug Metab Dispos. 1994 May-Jun;22(3):371–376. [PubMed] [Google Scholar]
- Graf T., Broly F., Hoffmann F., Probst M., Meyer U. A., Howald H. Prediction of phenotype for acetylation and for debrisoquine hydroxylation by DNA-tests in healthy human volunteers. Eur J Clin Pharmacol. 1992;43(4):399–403. doi: 10.1007/BF02220616. [DOI] [PubMed] [Google Scholar]
- Grant D. M., Blum M., Demierre A., Meyer U. A. Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to polymorphic drug acetylation. Nucleic Acids Res. 1989 May 25;17(10):3978–3978. doi: 10.1093/nar/17.10.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant D. M., Tang B. K., Kalow W. A simple test for acetylator phenotype using caffeine. Br J Clin Pharmacol. 1984 Apr;17(4):459–464. doi: 10.1111/j.1365-2125.1984.tb02372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashiguchi M., Ebihara A. Acetylation polymorphism of caffeine in a Japanese population. Clin Pharmacol Ther. 1992 Sep;52(3):274–276. doi: 10.1038/clpt.1992.141. [DOI] [PubMed] [Google Scholar]
- Hayes R. B., Bi W., Rothman N., Broly F., Caporaso N., Feng P., You X., Yin S., Woosley R. L., Meyer U. A. N-acetylation phenotype and genotype and risk of bladder cancer in benzidine-exposed workers. Carcinogenesis. 1993 Apr;14(4):675–678. doi: 10.1093/carcin/14.4.675. [DOI] [PubMed] [Google Scholar]
- Hein D. W., Doll M. A., Rustan T. D., Gray K., Feng Y., Ferguson R. J., Grant D. M. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993 Aug;14(8):1633–1638. doi: 10.1093/carcin/14.8.1633. [DOI] [PubMed] [Google Scholar]
- Hein D. W., Ferguson R. J., Doll M. A., Rustan T. D., Gray K. Molecular genetics of human polymorphic N-acetyltransferase: enzymatic analysis of 15 recombinant wild-type, mutant, and chimeric NAT2 allozymes. Hum Mol Genet. 1994 May;3(5):729–734. doi: 10.1093/hmg/3.5.729. [DOI] [PubMed] [Google Scholar]
- Hickman D., Risch A., Buckle V., Spurr N. K., Jeremiah S. J., McCarthy A., Sim E. Chromosomal localization of human genes for arylamine N-acetyltransferase. Biochem J. 1994 Feb 1;297(Pt 3):441–445. doi: 10.1042/bj2970441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickman D., Sim E. N-acetyltransferase polymorphism. Comparison of phenotype and genotype in humans. Biochem Pharmacol. 1991 Aug 8;42(5):1007–1014. doi: 10.1016/0006-2952(91)90282-a. [DOI] [PubMed] [Google Scholar]
- Lin H. J., Han C. Y., Lin B. K., Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics. 1994 Jun;4(3):125–134. doi: 10.1097/00008571-199406000-00003. [DOI] [PubMed] [Google Scholar]
- Lin H. J., Han C. Y., Lin B. K., Hardy S. Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: application to metabolic epidemiology. Am J Hum Genet. 1993 Apr;52(4):827–834. [PMC free article] [PubMed] [Google Scholar]
- Mashimo M., Suzuki T., Abe M., Deguchi T. Molecular genotyping of N-acetylation polymorphism to predict phenotype. Hum Genet. 1992 Sep-Oct;90(1-2):139–143. doi: 10.1007/BF00210758. [DOI] [PubMed] [Google Scholar]
- Mrozikiewicz P. M., Drakoulis N., Roots I. Polymorphic arylamine N-acetyltransferase (NAT2) genes in children with insulin-dependent diabetes mellitus. Clin Pharmacol Ther. 1994 Dec;56(6 Pt 1):626–634. doi: 10.1038/clpt.1994.187. [DOI] [PubMed] [Google Scholar]
- Ohsako S., Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem. 1990 Mar 15;265(8):4630–4634. [PubMed] [Google Scholar]
- Relling M. V., Lin J. S., Ayers G. D., Evans W. E. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther. 1992 Dec;52(6):643–658. doi: 10.1038/clpt.1992.203. [DOI] [PubMed] [Google Scholar]
- Rothman N., Hayes R. B., Bi W., Caporaso N., Broly F., Woosley R. L., Yin S., Feng P., You X., Meyer U. A. Correlation between N-acetyltransferase activity and NAT2 genotype in Chinese males. Pharmacogenetics. 1993 Oct;3(5):250–255. doi: 10.1097/00008571-199310000-00004. [DOI] [PubMed] [Google Scholar]
- Vatsis K. P., Martell K. J., Weber W. W. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6333–6337. doi: 10.1073/pnas.88.14.6333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vatsis K. P., Weber W. W., Bell D. A., Dupret J. M., Evans D. A., Grant D. M., Hein D. W., Lin H. J., Meyer U. A., Relling M. V. Nomenclature for N-acetyltransferases. Pharmacogenetics. 1995 Feb;5(1):1–17. doi: 10.1097/00008571-199502000-00001. [DOI] [PubMed] [Google Scholar]
- Weber W. W., Vatsis K. P. Individual variability in p-aminobenzoic acid N-acetylation by human N-acetyltransferase (NAT1) of peripheral blood. Pharmacogenetics. 1993 Aug;3(4):209–212. doi: 10.1097/00008571-199308000-00006. [DOI] [PubMed] [Google Scholar]

